Giải bài 30 trang 70 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:06:00

Đề bài

Tính các giới hạn sau:

a) \(\mathop {\lim }\limits_{x \to  - 2} \frac{{2{x^2} - x - 10}}{{x + 2}}\)

b)  \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {4{x^2} + x + 1}  - x}}{{2x + 1}}\).

c) \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{x - 2}} - \frac{2}{{{{(x - 2)}^2}}}} \right)\)

d) \(\mathop {\lim }\limits_{x \to  - {5^ - }} \frac{{2x}}{{x + 5}}\).

Phương pháp giải - Xem chi tiết

Dạng 1 : \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f(x)}}{{g(x)}}\) có dạng \(\frac{0}{0}\)

Cách 1  : Phân tích f(x) và g(x) để tạo ra thừa số chung (x – x0) rồi rút gọn          

Cách 2 : Nhân tử và mẫu với  lượng liên hợp rồi tiếp tục  để tạo thừa số chung (x – x0) rồi rút gọn.

Dạng2 : \(\mathop {\lim }\limits_{x \to  \pm \infty } \frac{{f(x)}}{{g(x)}}\)

           Cách giải  : Tương tự như cách tính giới hạn của dãy số

           Dạng3 : \(\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} \frac{{f(x)}}{{g(x)}}\) có dạng \(\frac{C}{0}\) , C là hằng số

Cách giải : Sử dụng một trong 4 quy tắc sau tìm giới hạn  vô cực của hàm số dạng thương sau đây :

1) \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} f(x) = C > 0\\\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} g(x) = 0\\g(x) > 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} \frac{{f(x)}}{{g(x)}} =  + \infty \)                

2) \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} f(x) = C < 0\\\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} g(x) = 0\\g(x) < 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} \frac{{f(x)}}{{g(x)}} =  + \infty \)

3) \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} f(x) = C > 0\\\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} g(x) = 0\\g(x) < 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} \frac{{f(x)}}{{g(x)}} =  - \infty \)                 

4) \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} f(x) = C < 0\\\mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} g(x) = 0\\g(x) > 0\end{array} \right. \Rightarrow \mathop {\lim }\limits_{x \to {x_{{0^ \pm }}}} \frac{{f(x)}}{{g(x)}} =  - \infty \)

Lời giải chi tiết

a) \(\mathop {\lim }\limits_{x \to  - 2} \frac{{2{x^2} - x - 10}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \frac{{\left( {x + 2} \right)\left( {2x - 5} \right)}}{{x + 2}} = \mathop {\lim }\limits_{x \to  - 2} \left( {2x - 5} \right) =  - 9\).

b) \(\mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {4{x^2} + x + 1}  - x}}{{2x + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \frac{{ - \sqrt {4 + \frac{1}{x} + \frac{1}{{{x^2}}}}  - 1}}{{2 + \frac{1}{x}}} =  - \frac{3}{2}\).

c) \(\mathop {\lim }\limits_{x \to 2} \left( {\frac{1}{{x - 2}} - \frac{2}{{{{(x - 2)}^2}}}} \right) = \mathop {\lim }\limits_{x \to 2} \frac{{x - 4}}{{{{(x - 2)}^2}}} =  - \infty \)

(do \(\mathop {\lim }\limits_{x \to 2} \left( {x - 4} \right) =  - 2 < 0\) và \(\mathop {\lim }\limits_{x \to 2} {(x - 2)^2} = 0,{(x - 2)^2} > 0,\forall x \ne 2\) ).

d) \(\mathop {\lim }\limits_{x \to  - {5^ - }} \frac{{2x}}{{x + 5}} =  + \infty \)

(do  \(\mathop {\lim }\limits_{x \to  - {5^ - }} 2x =  - 10 < 0,\mathop {\lim }\limits_{x \to  - {5^ - }} \left( {x + 5} \right) = 0\) và \(x + 5 < 0,\forall x <  - 5\) ).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"