Giải bài 33 trang 71 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:06:01

Đề bài

Cho các hàm số \(f\left( x \right) = {3^{2x - 1}}\) và \(g\left( x \right) = x{\rm{ln}}9\). Giải bất phương trình \(f'\left( x \right) < g'\left( x \right)\).

Phương pháp giải - Xem chi tiết

\({\left( {{a^u}} \right)^\prime } = u'.{a^u}.\ln a\)

Tính \(f'\left( x \right);g'\left( x \right)\).

Giải bất phương trình \(f'\left( x \right) < g'\left( x \right)\).

Lời giải chi tiết

Ta có \(f'\left( x \right) = 2 \cdot {3^{2x - 1}} \cdot {\rm{ln}}3;g'\left( x \right) = {\rm{ln}}9\).

Khi đó: \(f'\left( x \right) < g'\left( x \right) \Leftrightarrow 2 \cdot {3^{2x - 1}} \cdot {\rm{ln}}3 < {\rm{ln}}9 \Leftrightarrow {3^{2x - 1}} < 1 \Leftrightarrow 2x - 1 < 0 \Leftrightarrow x < \frac{1}{2}\).

Vậy nghiệm của bất phương trình đã cho là \(\left( { - \infty ;\frac{1}{2}} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"