Giải bài 38 trang 71 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:06:03

Đề bài

Gieo hai xúc xắc I và II cân đối, đồng chất một cách độc lập. Xét các biến cố \(A,B\) sau đây:

\(A\): "Có ít nhất một xúc xắc xuất hiện mặt 6 chấm".

\(B\): "Tổng số chấm xuất hiện trên mặt của hai xúc xắc bằng 7 ".

a) Tính \(P\left( A \right),P\left( B \right)\).

b) Hai biến cố \(A\) và \(B\) có độc lập hay không?

Phương pháp giải - Xem chi tiết

\(n\left( \Omega  \right) = 6.6 = 36\)

a) Liệt kê các kết quả thuận lợi cho \(B\) \( \Rightarrow n\left( B \right) \Rightarrow P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega  \right)}}\)

Tìm kết quả thuận lợi cho \(A\) \( \Rightarrow n\left( A \right) \Rightarrow P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}}\)

b) Xét biến cố \(AB\): "Tổng số chấm xuất hiện trên mặt của hai xúc xắc bằng 7, trong đó có ít nhất một xúc xắc xuất hiện mặt 6 chấm."

Liệt kê các kết quả thuận lợi cho\(AB\)

Từ đó  suy ra \(P\left( {AB} \right)\).

Kiểm tra nếu \(P\left( {AB} \right) \ne P\left( A \right)P\left( B \right)\) suy ra \(A,B\) không độc lập.

Kiểm tra nếu \(P\left( {AB} \right) = P\left( A \right)P\left( B \right)\) suy ra \(A,B\) độc lập.

Lời giải chi tiết

\(n\left( \Omega  \right) = 6.6 = 36\)

a) Các kết quả thuận lợi cho \(B\) là: \(\left( {1,6} \right);\left( {2,5} \right);\left( {3,4} \right);\left( {4,3} \right);\left( {5,2} \right);\left( {6,1} \right)\).

Vậy \(P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\).

 Các kết quả thuận lợi cho \(A\) là\(\left( {1,6} \right);\left( {2,6} \right);\left( {3,6} \right);\left( {4,6} \right);\left( {5,6} \right);\left( {6,6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right)\).

\(n\left( A \right) = 11 \Rightarrow P\left( A \right) = \frac{{11}}{{36}}\).

b) Xét biến cố \(AB\): "Tổng số chấm xuất hiện trên mặt của hai xúc xắc bằng 7, trong đó có ít nhất một xúc xắc xuất hiện mặt 6 chấm."

Các kết quả thuận lợi cho \(AB\) là \(\left( {1,6} \right);\left( {6,1} \right)\).

Do đó: \(P\left( {AB} \right) = \frac{2}{{36}} = \frac{1}{{18}}\).

Lại có \(P\left( A \right) \cdot P\left( B \right) = \frac{{11}}{{36}} \cdot \frac{1}{6} = \frac{{11}}{{216}}\).

Suy ra \(P\left( {AB} \right) \ne P\left( A \right)P\left( B \right)\). Vậy \(A,B\) không độc lập.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"