Giải bài 40 trang 72 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

2024-09-14 13:06:04

Đề bài

Cho hình chóp đều \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng a và \(SA = a\sqrt 2 \).

a) Tính theo a thể tích khối chóp \(S.ABCD.\)

b) Tính theo a khoảng cách giữa hai đường thẳng \(AD\) và \(SB\).

Phương pháp giải - Xem chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

Áp dụng định lý Pytago tính : \(SO = \sqrt {S{A^2} - O{A^2}} \).

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO\)

 

b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên

\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)

\(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).

Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì

\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)

Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}}\).

Suy ra \(d\left( {AD,SB} \right) = 2.OH\).

Lời giải chi tiết

a) Gọi \(O\) là giao điểm của \(AC\) và \(BD\).

Vì \(S.ABCD\) là hình chóp đều nên \(SO \bot \left( {ABCD} \right)\).

Ta có tam giác \(SAO\) vuông tại \(O\) nên theo định lí Pythagore: \(SO = \sqrt {S{A^2} - O{A^2}}  = \frac{{a\sqrt 6 }}{2}\).

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{1}{3} \cdot {S_{ABCD}} \cdot SO = \frac{{{a^3}\sqrt 6 }}{6}.\)

 

b) Vì \(AD//\left( {SBC} \right)\) và mặt phẳng \(\left( {SBC} \right)\) chứa \(SB\) nên

\(d\left( {AD,SB} \right) = d\left( {AD,\left( {SBC} \right)} \right) = d\left( {A,\left( {SBC} \right)} \right)\)

Đường thẳng \(AO\) cắt mặt phẳng \(\left( {SBC} \right)\) tại \(C\) và \(O\) là trung điểm của đoạn \(AC\) nên \(d\left( {A,\left( {SBC} \right)} \right) = 2.d\left( {O,\left( {SBC} \right)} \right)\).

Kẻ \(OM\) vuông góc với \(BC\) tại \(M,OH\) vuông góc với \(SM\) tại \(H\) thì

\(BC \bot \left( {SOM} \right) \Rightarrow BC \bot OH \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH.\)

Tam giác \(SOM\)vuông tại \(O\), có đường cao \(OH\), khi đó \(OH = \frac{{SO \cdot OM}}{{SM}} = \frac{{a\sqrt {42} }}{{14}}\).

Vậy \(d\left( {AD,SB} \right) = 2.OH = \frac{{a\sqrt {42} }}{7}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"