Giải bài 8 trang 15 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:22

Đề bài

Tính giá trị của các biểu thức sau:

a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\);

b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}}\).

Phương pháp giải - Xem chi tiết

a) + Sử dụng kiến thức về giá trị lượng giác của các góc lượng giác có liên quan đặc biệt: \(\sin \left( {\alpha  + \pi } \right) =  - \sin \alpha \), \(\sin \left( {\frac{\pi }{2} - \alpha } \right) = \cos \alpha \), \(\cos \left( {\pi  - \alpha } \right) =  - \cos \alpha \)

+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\).

b) \(\tan \left( {\pi  - \alpha } \right) =  - \tan \alpha \), \(\tan \left( {\frac{\pi }{2} - \alpha } \right) = \cot \alpha \)

+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc:\(\cot \alpha  = \frac{1}{{\tan \alpha }}\).

Lời giải chi tiết

a) \(\sin {17^0}\sin {197^0} + \sin {73^0}\cos {163^0}\)

\( \) \( = \sin {17^0}\sin \left( {{{180}^0} + {{17}^0}} \right) + \sin \left( {{{90}^0} - {{17}^0}} \right)\cos \left( {{{180}^0} - {{17}^0}} \right)\)

\( \) \( = \sin {17^0}\left( { - \sin {{17}^0}} \right) + \cos {17^0}\left( { - \cos {{17}^0}} \right)\)

\( \) \( =  - \left[ {{{\sin }^2}{{17}^0} + {{\cos }^2}{{17}^0}} \right] \) \( =  - 1\)

b) \(\frac{1}{{1 - \tan {{145}^0}}} + \frac{1}{{1 + \tan {{55}^0}}} \) \( = \frac{1}{{1 - \tan \left( {{{180}^0} - {{35}^0}} \right)}} + \frac{1}{{1 + \tan \left( {{{90}^0} - {{35}^0}} \right)}}\)

\( \) \( = \frac{1}{{1 + \tan {{35}^0}}} + \frac{1}{{1 + \cot {{35}^0}}} \) \( = \frac{1}{{1 + \tan {{35}^0}}} + \frac{1}{{1 + \frac{1}{{\tan {{35}^0}}}}} \) \( = \frac{{1 + \tan {{35}^0}}}{{1 + \tan {{35}^0}}} \) \( = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"