Giải bài 9 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:23

Đề bài

Không sử dụng máy tính cầm tay, tính giá trị của các biểu thức sau:

a) \(\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\);

b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\).

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về công thức góc nhân đôi để tính: \(\sin 2\alpha  = 2\sin \alpha \cos \alpha \)

b) Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha  - \beta } \right) = \cos \alpha \cos \beta  + \sin \alpha \sin \beta \)

Lời giải chi tiết

a) Đặt \(A \) \( = \sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)

\( \Rightarrow A.\cos {6^0} \) \( = \cos {6^0}\sin {6^0}\cos {12^0}\cos {24^0}\cos {48^0}\)

\( = \frac{1}{2}\sin {12^0}\cos {12^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{4}\sin {24^0}\cos {24^0}\cos {48^0} \) \( = \frac{1}{8}\sin {48^0}\cos {48^0} \) \( = \frac{1}{{16}}\sin {96^0}\)

Do đó, \(A \) \( = \frac{{\sin {{96}^0}}}{{16\cos {6^0}}} \) \( = \frac{{\cos {6^0}}}{{16\cos {6^0}}} \) \( = \frac{1}{{16}}\)

b) \(\cos {68^0}\cos {78^0} + \cos {22^0}\cos {12^0} + \cos {190^0}\)

\( = \cos \left( {{{90}^0} - {{22}^0}} \right)\cos \left( {{{90}^0} - {{12}^0}} \right) + \cos {22^0}\cos {12^0} + \cos \left( {{{180}^0} + {{10}^0}} \right)\)

\( = \sin {22^0}\sin {12^0} + \cos {22^0}\cos {12^0} - \cos {10^0}\)

\( = \cos \left( {{{22}^0} - {{12}^0}} \right) - \cos {10^0} \) \( = \cos {10^0} - \cos {10^0} \) \( = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"