Giải bài 6 trang 20 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:24

Đề bài

Cho tam giác ABC, chứng minh rằng:

a) \(\cos A\cos B - \sin A\sin B + \cos C = 0\);

b) \(\cos \frac{B}{2}\sin \frac{C}{2} + \sin \frac{B}{2}\cos \frac{C}{2} = \cos \frac{A}{2}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về công thức cộng để chứng minh:

a) \(\cos \left( {\alpha  + \beta } \right) \) \( = \cos \alpha \cos \beta  - \sin \alpha \sin \beta \)

b) \(\sin \left( {\alpha  + \beta } \right) \) \( = \sin \alpha \cos \beta  + \cos \alpha \sin \beta \)

Lời giải chi tiết

a) Tam giác ABC có: \(A + B + C \) \( = {180^0} \Rightarrow A + B \) \( = {180^0} - C\)

\(\cos A\cos B - \sin A\sin B + \cos C \) \( = \cos \left( {A + B} \right) + \cos C \) \( = \cos \left( {{{180}^0} - C} \right) + \cos C\)

\( \) \( =  - \cos C + \cos C \) \( = 0\)

b) Tam giác ABC có: \(A + B + C \) \( = {180^0} \Rightarrow \frac{B}{2} + \frac{C}{2} \) \( = {90^0} - \frac{A}{2}\)

\(\cos \frac{B}{2}\sin \frac{C}{2} + \sin \frac{B}{2}\cos \frac{C}{2} \) \( = \sin \left( {\frac{B}{2} + \frac{C}{2}} \right) \) \( = \sin \left( {{{90}^0} - \frac{A}{2}} \right) \) \( = \cos \frac{A}{2}\). 

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"