Giải bài 3 trang 19 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:25

Đề bài

Rút gọn các biểu thức sau:

a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x\);

b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}}\);

c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}}\);

d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về các công thức lượng giác để rút gọn:

a) \(\sin 2\alpha  = 2\sin \alpha \cos \alpha \), \({\cos ^2}\alpha  - {\sin ^2}\alpha  = \cos 2\alpha \)

b) \(\sin \alpha \cos \beta  = \frac{1}{2}\left[ {\sin \left( {\alpha  - \beta } \right) + \sin \left( {\alpha  + \beta } \right)} \right]\)

c) \(\cos \alpha  + \cos \beta  = 2\cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\), \(\sin \alpha  + \sin \beta  = 2\sin \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\)

d) \(\sin \left( {\alpha  + \beta } \right) = \sin \alpha \cos \beta  + \cos \alpha \sin \beta \), \(\cos \alpha  + \cos \beta  = 2\cos \frac{{\alpha  + \beta }}{2}\cos \frac{{\alpha  - \beta }}{2}\)

Lời giải chi tiết

a) \(\sin x{\cos ^5}x - \cos x{\sin ^5}x \) \( = \sin x\cos x\left( {{{\cos }^4}x - {{\sin }^4}x} \right)\)

\( \) \( = \sin x\cos x\left( {{{\cos }^2}x - {{\sin }^2}x} \right)\left( {{{\cos }^2}x + {{\sin }^2}x} \right) \) \( = \frac{1}{2}\sin 2x\cos 2x \) \( = \frac{1}{4}\sin 4x\)

b) \(\frac{{\sin 3x\cos 2x + \sin x\cos 6x}}{{\sin 4x}} \) \( = \frac{{\frac{1}{2}\left( {\sin 5x + \sin x} \right) + \frac{1}{2}\left( {\sin 7x - \sin 5x} \right)}}{{\sin 4x}}\)

\( \) \( = \frac{{\sin x + \sin 7x}}{{2\sin 4x}} \) \( = \frac{{2\sin 4x\cos 3x}}{{2\sin 4x}} \) \( = \cos 3x\)

c) \(\frac{{\cos x - \cos 2x + \cos 3x}}{{\sin x - \sin 2x + \sin 3x}} \) \( = \frac{{\left( {\cos x + \cos 3x} \right) - \cos 2x}}{{\left( {\sin x + \sin 3x} \right) - \sin 2x}} \) \( = \frac{{2\cos 2x\cos x - \cos 2x}}{{2\sin 2x\cos x - \sin 2x}}\)

\( \) \( = \frac{{\cos 2x\left( {2\cos x - 1} \right)}}{{\sin 2x\left( {2\cos x - 1} \right)}} \) \( = \cot 2x\)

d) \(\frac{{2\sin \left( {x + y} \right)}}{{\cos \left( {x + y} \right) + \cos \left( {x - y} \right)}} - \tan y \) \( = \frac{{2\left( {\sin x\cos y + \cos x\sin y} \right)}}{{2\cos x\cos y}} - \frac{{\sin y}}{{\cos y}}\)

\( \) \( = \frac{{2\sin x\cos y + 2\cos x\sin y - 2\cos x\sin y}}{{2\cos x\cos y}} \) \( = \frac{{2\sin x\cos y}}{{2\cos x\cos y}} \) \( = \tan x\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"