Giải bài 8 trang 27 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:26

Đề bài

Một chất điểm dao động điều hòa theo phương trình \(s = 3\sin \left( {\frac{\pi }{2}t} \right)\) với s tính bằng cm và t tính bằng giây. Dựa vào đồ thị của hàm số sin, hãy xác định ở các thời điểm t nào trong 4 giây đầu thì \(s \le  - \frac{3}{2}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về đồ thị hàm số \(y = \sin u\left( x \right)\) để giải.

Lời giải chi tiết

Trong 4 giây đầu, ta có \(0 \le t \le 4\), suy ra: \(0 \le \frac{\pi }{2}t \le 2\pi \).

Đặt \(x = \frac{\pi }{2}t\), khi đó \(x \in \left[ {0;2\pi } \right]\). Đồ thị của hàm số \(y = \sin x\) trên đoạn \(\left[ {0;2\pi } \right]\) là:

Dựa vào đồ thị trên đoạn \(\left[ {0;2\pi } \right]\), ta có:

\(s \le \frac{{ - 3}}{2}\) khi \(3\sin x \le \frac{{ - 1}}{2}\), suy ra \(\frac{{7\pi }}{6} \le x \le \frac{{11\pi }}{6}\). Do đó, \(\frac{7}{3} \le t \le \frac{{11}}{3}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"