Giải bài 1 trang 34 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:33

Đề bài

Cho \(\sin \alpha  = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha  < \pi \). Tính giá trị của các biểu thức sau:

a) \(\sin 2\alpha \);

b) \(\cos \left( {\alpha  + \frac{\pi }{3}} \right)\);

c) \[\tan \left( {2\alpha  - \frac{\pi }{4}} \right)\].

Cho \(\sin \alpha  = \frac{3}{4}\) với \(\frac{\pi }{2} < \alpha  < \pi \). Tính giá trị của các biểu thức sau:

a) \(\sin 2\alpha \);

b) \(\cos \left( {\alpha  + \frac{\pi }{3}} \right)\);

c) \(\tan \left( {2\alpha  - \frac{\pi }{4}} \right)\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về hệ thức cơ bản giữa các giá trị lượng giác của một góc lượng giác: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\).

+ Sử dụng kiến thức về góc nhân đôi để tính \(\tan 2\alpha  = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }};\sin 2\alpha  = 2\sin \alpha \cos \alpha \)

+ Sử dụng kiến thức về công thức cộng để tính: \(\cos \left( {\alpha  + \beta } \right) = \cos \alpha \cos \beta  - \sin \alpha \sin \beta \); \(\tan \left( {\alpha  - \beta } \right) = \frac{{\tan \alpha  - \tan \beta }}{{1 + \tan \alpha \tan \beta }}\)

Lời giải chi tiết

Vì \(\frac{\pi }{2} < \alpha  < \pi  \Rightarrow \cos \alpha  < 0\)

Do đó, \(\cos \alpha  =  - \sqrt {1 - {{\sin }^2}\alpha }  =  - \sqrt {1 - {{\left( {\frac{3}{4}} \right)}^2}}  =  - \frac{{\sqrt 7 }}{4}\)
a) \(\sin 2\alpha  = 2\sin \alpha \cos \alpha  = 2.\frac{3}{4}.\frac{{ - \sqrt 7 }}{4} = \frac{{ - 3\sqrt 7 }}{8}\);

b) \(\cos \left( {\alpha  + \frac{\pi }{3}} \right) = \cos \alpha \cos \frac{\pi }{3} - \sin \alpha \sin \frac{\pi }{3} = \frac{{ - \sqrt 7 }}{4}.\frac{1}{2} - \frac{3}{4}.\frac{{\sqrt 3 }}{2} = \frac{{ - \sqrt 7  - 3\sqrt 3 }}{8}\);

c) \(\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }} = \frac{{\frac{3}{4}}}{{\frac{{ - \sqrt 7 }}{4}}} = \frac{{ - 3\sqrt 7 }}{7}\), \(\tan 2\alpha  = \frac{{2\tan \alpha }}{{1 - {{\tan }^2}\alpha }} = 3\sqrt 7 \)

\(\tan \left( {2\alpha  - \frac{\pi }{4}} \right) = \frac{{\tan 2\alpha  - \tan \frac{\pi }{4}}}{{1 + \tan 2\alpha .\tan \frac{\pi }{4}}} = \frac{{3\sqrt 7  - 1}}{{1 + 3\sqrt 7 .1}} = \frac{{{{\left( {3\sqrt 7  - 1} \right)}^2}}}{{\left( {3\sqrt 7  - 1} \right)\left( {1 + 3\sqrt 7 } \right)}} = \frac{{32 - 3\sqrt 7 }}{{31}}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"