Giải bài 4 trang 60 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:36

Đề bài

Cho cấp số cộng \(\left( {{u_n}} \right)\), biết \({u_1} = 5\) và \(d = 3\).

a) Tìm số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\).

b) Tìm \({u_{99}}\).

c) Số 1 502 là số hạng thứ bao nhiêu của cấp số cộng \(\left( {{u_n}} \right)\)?

d) Cho biết \({S_n} = 34275\). Tìm n.

Phương pháp giải - Xem chi tiết

a, b, c) Sử dụng kiến thức về số hạng tổng quát của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d,n \ge 2\).

d) Sử dụng kiến thức về tổng của n số hạng đầu tiên của cấp số cộng để tính: Nếu một cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Đặt \({S_n} = {u_1} + {u_2} + ... + {u_n}\), khi đó \({S_n} = \frac{{n\left( {{u_1} + {u_n}} \right)}}{2}\) hay \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}\).

Lời giải chi tiết

a) Số hạng tổng quát của cấp số cộng \(\left( {{u_n}} \right)\) là: \({u_n} = 5 + 3\left( {n - 1} \right) = 3n + 2\)

b) Ta có: \({u_{99}} = 3.99 + 2 = 299\)

c) Ta có: \(3n + 2 = 1\;502 \Leftrightarrow 3n = 1\;500 \Leftrightarrow n = 500\)

Vậy số 1 502 là số hạng thứ 500 của cấp số cộng \(\left( {{u_n}} \right)\).

d) Ta có: \({S_n} = \frac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2} \Leftrightarrow 34\;275 = \frac{{n\left[ {2.5 + 3\left( {n - 1} \right)} \right]}}{2}\)

\( \Leftrightarrow 68\;550 = 3{n^2} + 7n \Leftrightarrow 3{n^2} + 7n - 68\;550 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 150\left( {TM} \right)\\n = \frac{{ - 457}}{3}\left( {KTM} \right)\end{array} \right.\)

Vậy \(n = 150\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"