Giải bài 5 trang 65 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:43

Đề bài

Xác định số hạng đầu và công bội của cấp số nhân \(\left( {{u_n}} \right)\) có \(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về số hạng tổng quát của cấp số nhân để tính: Nếu một cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q thì số hạng tổng quát \({u_n}\) của nó được xác định bởi công thức: \({u_n} = {u_1}.{q^{n - 1}},n \ge 2\).

Lời giải chi tiết

\(\left\{ \begin{array}{l}{u_3} - {u_1} = 24\\{u_6} - {u_4} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^2} - {u_1} = 24\\{u_1}.{q^5} - {u_1}.{q^3} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\{u_1}.{q^3}\left( {{q^2} - 1} \right) = 3\;000\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\24{q^3} = 3\;000\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1}\left( {{q^2} - 1} \right) = 24\\{q^3} = 125\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{u_1} = \frac{{24}}{{{5^2} - 1}} = 1\\q = 5\end{array} \right.\)

Vậy cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu là \({u_1} = 1\) và công bội là \(q = 5\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"