Giải bài 12 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:52

Đề bài

Cho nửa đường tròn đường kính \(AB = 2\). Đường thẳng d thay đổi luôn đi qua A, cắt nửa đường tròn tại C và tạo với đường thẳng AB góc \(\alpha \left( {0 < \alpha  < \frac{\pi }{2}} \right)\). Kí hiệu diện tích tam giác ABC là \(S\left( \alpha  \right)\) (phụ thuộc vào \(\alpha \)). Xét tính liên tục của hàm số \(S\left( \alpha  \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\) và tính các giới hạn \(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right)\); \(\mathop {\lim }\limits_{\alpha  \to {{\frac{\pi }{2}}^ - }} S\left( \alpha  \right)\) 

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để tính: Hàm số \(y = \sin x\) liên tục trên \(\mathbb{R}\).

Lời giải chi tiết

\(S\left( \alpha  \right) = \frac{1}{2}AC.BC = \frac{1}{2}.2\cos \alpha .2\sin \alpha  = \sin 2\alpha ,\alpha  \in \left( {0;\frac{\pi }{2}} \right)\).

Do hàm số \(y = \sin 2\alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha  \right)\) liên tục trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\).

\(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {0^ + }} \sin 2\alpha  = \sin 0 = 0\); \(\mathop {\lim }\limits_{\alpha  \to {{\frac{\pi }{2}}^ - }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {{\frac{\pi }{2}}^ - }} \sin 2\alpha  = \sin \left( {2.\frac{\pi }{2}} \right) = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"