Giải bài 11 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:53

Đề bài

Trong mặt phẳng tọa độ Oxy, cho đường tròn \(\left( C \right):{x^2} + {\left( {y - 1} \right)^2} = 1\). Với mỗi số thực m, gọi Q(m) là số giao điểm của đường thẳng \(d:y = m\) với đường tròn (C). Viết công thức xác định hàm số \(y = Q\left( m \right)\). Hàm số này không liên tục tại các điểm nào?

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để xét tính liên tục của hàm số: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết

\(Q\left( m \right) = \left\{ \begin{array}{l}0\;khi\;m < 0\;hay\;m > 2\\1\;khi\;m = 0\;hay\;m = 2\\2\;khi\;0 < m < 2\end{array} \right.\)

Vì \(\mathop {\lim }\limits_{m \to {0^ + }} Q\left( m \right) \ne \mathop {\lim }\limits_{m \to {0^ - }} Q\left( m \right)\) nên hàm số trên không liên tục tại điểm \(m = 0\).

Vì \(\mathop {\lim }\limits_{m \to {2^ + }} Q\left( m \right) \ne \mathop {\lim }\limits_{m \to {2^ - }} Q\left( m \right)\) nên hàm số trên không liên tục tại điểm \(m = 2\).

Vậy hàm số Q(m) không liên tục tại các điểm \(m = 0\), \(m = 2\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"