Giải bài 10 trang 91 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:53

Đề bài

Chứng minh rằng phương trình:

a) \({x^3} + 2x - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - 1;1} \right)\);

b) \(\sqrt {{x^2} + x}  + {x^2} = 1\) có nghiệm thuộc khoảng \(\left( {0;1} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về ứng dụng tính liên tục của hàm số vào xét sự tồn tại nghiệm của phương trình để chứng minh: Nếu hàm số \(y = f\left( x \right)\) liên tục trên đoạn \(\left[ {a;b} \right]\) và \(f\left( a \right).f\left( b \right) < 0\) thì luôn tồn tại ít nhất một điểm \(c \in \left( {a;b} \right)\) sao cho \(f\left( c \right) = 0\).

Lời giải chi tiết

a) Xét hàm số \(f\left( x \right) = {x^3} + 2x - 1\), f(x) liên tục trên \(\left[ { - 1;1} \right]\) và có \(f\left( { - 1} \right) =  - 4,f\left( 1 \right) = 2\). Do \(f\left( { - 1} \right).f\left( 1 \right) < 0\) nên phương trình \({x^3} + 2x - 1 = 0\) có nghiệm thuộc khoảng \(\left( { - 1;1} \right)\).

b) Xét hàm số \(f\left( x \right) = \sqrt {{x^2} + x}  + {x^2} - 1\), f(x) liên tục trên \(\left[ {0;1} \right]\) và có \(f\left( 0 \right) =  - 1,f\left( 1 \right) = \sqrt 2 \). Do \(f\left( 0 \right).f\left( 1 \right) < 0\) nên phương trình \(f\left( x \right) = 0\) hay phương trình \(\sqrt {{x^2} + x}  + {x^2} = 1\) có nghiệm thuộc khoảng \(\left( {0;1} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"