Giải bài 6 trang 90 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:54

Đề bài

Xét tính liên tục của các hàm số sau:

a) \(f\left( x \right) = \frac{{\tan x}}{{\sqrt {1 - {x^2}} }}\);

b) \(f\left( x \right) = \frac{1}{{\sin x}}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về tính liên tục của hàm số sơ cấp để xét tính liên tục các hàm số:

+ Hàm số căn thức \(y = \sqrt {P\left( x \right)} \), hàm số lượng giác \(y = \tan x\) liên tục trên các khoảng của tập xác định của chúng (với P(x) là đa thức).

+ Hàm số phân thức \(y = \frac{{P\left( x \right)}}{{Q\left( x \right)}}\) liên tục trên các khoảng của tập xác định của chúng (với P(x) và Q(x) là đa thức).

Lời giải chi tiết

a) Điều kiện: \(1 - {x^2} > 0 \Leftrightarrow  - 1 < x < 1\). Hàm số \(y = \sqrt {1 - {x^2}} \) xác định và liên tục trên \(\left( { - 1;1} \right)\). Do \(\left( { - 1;1} \right) \subset \left( {\frac{{ - \pi }}{2};\frac{\pi }{2}} \right)\) nên hàm số \(y = \tan x\) xác định và liên tục trên \(\left( { - 1;1} \right)\).

Vậy hàm số \(f\left( x \right) = \frac{{\tan x}}{{\sqrt {1 - {x^2}} }}\) liên tục trên \(\left( { - 1;1} \right)\).

b) Hàm số \(f\left( x \right) = \frac{1}{{\sin x}}\) xác định khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi \left( {k \in \mathbb{Z}} \right)\).

Do đó, hàm số \(f\left( x \right) = \frac{1}{{\sin x}}\) liên tục trên các khoảng \(\left( {k\pi ;\left( {k + 1} \right)\pi } \right)\) với k là số nguyên.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"