Giải bài 12 trang 95 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:56

Đề bài

Tại một bể bơi có dạng hình tròn có đường kính \(AB = 10m\), một người xuất phát từ A bơi thẳng theo dây cung AC tạo với đường kính AB một góc \(\alpha \left( {0 < \alpha  < \frac{\pi }{2}} \right)\), rồi chạy bộ theo cung nhỏ CB đến điểm B (Hình 4). Gọi \(S\left( \alpha  \right)\) là quãng đường người đó đã di chuyển.

a) Viết công thức tính \(S\left( \alpha  \right)\) theo \(\alpha \left( {0 < \alpha  < \frac{\pi }{2}} \right)\).

b) Xét tính liên tục của hàm số \(y = S\left( \alpha  \right)\) trên khoảng \(\left( {0;\frac{\pi }{2}} \right)\).

c) Tính các giới hạn \(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right)\) và \(\mathop {\lim }\limits_{\alpha  \to {{\frac{\pi }{2}}^ + }} S\left( \alpha  \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\).

Lời giải chi tiết

a) Kí hiệu O là tâm hình tròn.

Do tam giác ABC vuông tại C nên \(AC = AB\cos \alpha  = 10\cos \alpha \left( m \right)\)

Ta có: \(\widehat {BOC} = 2\widehat {BAC} = 2\alpha \) nên độ dài cung BC là: \(l = OB.\widehat {BOC} = 5.2\alpha  = 10\alpha \left( m \right)\)

Quãng đường di chuyển của người đó là:

\(S\left( \alpha  \right) = AC + l = 10\cos \alpha  + 10\alpha  = 10\left( {\cos \alpha  + \alpha } \right)\)(m) \(\left( {0 < \alpha  < \frac{\pi }{2}} \right)\)

b) Do các hàm số \(y = \alpha ,y = \cos \alpha \) liên tục trên \(\mathbb{R}\) nên hàm số \(y = S\left( \alpha  \right)\) liên tục trên \(\left( {0;\frac{\pi }{2}} \right)\).

c) \(\mathop {\lim }\limits_{\alpha  \to {0^ + }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {0^ + }} 10\left( {\alpha  + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha  \to {0^ + }} \alpha  + \mathop {\lim }\limits_{x \to {0^ + }} \cos \alpha } \right) = 10\left( {0 + 1} \right) = 10\)

\(\mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} S\left( \alpha  \right) = \mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} 10\left( {\alpha  + \cos \alpha } \right) = 10\left( {\mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \alpha  + \mathop {\lim }\limits_{\alpha  \to {{\left( {\frac{\pi }{2}} \right)}^ + }} \cos \alpha } \right) = 10\left( {\frac{\pi }{2} + 0} \right) = 5\pi \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"