Giải bài 8 trang 94 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:06:57

Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{{x^2} - 9}}{{\left| {x + 3} \right|}}\;khi\;x \ne  - 3\\\;\;\;\;a\;\;\;\;\,khi\;x =  - 3\end{array} \right.\)

a) Tìm \(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to  - {3^ - }} f\left( x \right)\).

b) Với giá trị nào của a thì hàm số liên tục tại \(x =  - 3\).

Phương pháp giải - Xem chi tiết

a) + Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của hàm số để tính: Cho \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ + } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ + } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ + } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

Cho \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L,\mathop {\lim }\limits_{x \to x_0^ - } g\left( x \right) = M\): \(\mathop {\lim }\limits_{x \to x_0^ - } \left[ {f\left( x \right) \pm g\left( x \right)} \right] = L \pm M\), \(\mathop {\lim }\limits_{x \to x_0^ - } \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) (với \(M \ne 0\))

+ Sử dụng kiến thức về giới hạn hữu hạn cơ bản để tính: \(\mathop {\lim }\limits_{x \to {x_0}} c = c\) (với c là hằng số)

b) Sử dụng kiến thức về định nghĩa hàm số liên tục tại một điểm để tìm a: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng K và \({x_0} \in K\). Hàm số \(y = f\left( x \right)\) được gọi là liên tục tại điểm \({x_0}\) nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\)

Lời giải chi tiết

a) Ta có: \(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {3^ + }} \frac{{{x^2} - 9}}{{\left| {x + 3} \right|}} = \mathop {\lim }\limits_{x \to  - {3^ + }} \frac{{{x^2} - 9}}{{x + 3}} = \mathop {\lim }\limits_{x \to  - {3^ + }} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{x + 3}} = \mathop {\lim }\limits_{x \to  - {3^ + }} \left( {x - 3} \right) =  - 6\)

\(\mathop {\lim }\limits_{x \to  - {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to  - {3^ - }} \frac{{{x^2} - 9}}{{\left| {x + 3} \right|}} = \mathop {\lim }\limits_{x \to  - {3^ - }} \frac{{{x^2} - 9}}{{ - x - 3}} = \mathop {\lim }\limits_{x \to  - {3^ - }} \frac{{\left( {x - 3} \right)\left( {x + 3} \right)}}{{ - \left( {x + 3} \right)}} = \mathop {\lim }\limits_{x \to  - {3^ - }} \left( {3 - x} \right) = 6\)

Do đó, \(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) - \mathop {\lim }\limits_{x \to  - {3^ - }} f\left( x \right) =  - 6 - 6 =  - 12\)

b) Theo a ta có: \(\mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) =  - 6,\mathop {\lim }\limits_{x \to  - {3^ - }} f\left( x \right) = 6 \Rightarrow \mathop {\lim }\limits_{x \to  - {3^ + }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to  - {3^ - }} f\left( x \right)\). Do đó, không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to  - 3} f\left( x \right)\). Vậy không có giá trị nào của a để hàm số f(x) liên tục.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"