Giải bài 1 trang 93 sách bài tập toán 11 - Chân trời sáng tạo tập 1

2024-09-14 13:07:00

Đề bài

Tìm các giới hạn sau:

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5}  - \sqrt {n + 1} } \right)} \right]\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về các phép toán về giới hạn hữu hạn của dãy số để tính: Cho \(\lim {u_n} = a,\lim {v_n} = b\) và c là hằng số: \(\lim \left( {{u_n} \pm {v_n}} \right) = a \pm b\), \(\lim \left( {c.{u_n}} \right) = c.a\), \(\lim \left( {{u_n}.{v_n}} \right) = a.b\), \(\lim \frac{{{u_n}}}{{{v_n}}} = \frac{a}{b}\left( {b \ne 0} \right)\).

+ Sử dụng kiến thức về giới hạn hữu hạn của dãy số để tính: \(\lim \frac{c}{{{n^k}}} = 0\) với k là số nguyên dương, \(\lim c = c\) (c là hằng số)

Lời giải chi tiết

a) \(\lim \frac{{n\left( {2{n^2} + 3} \right)}}{{4{n^3} + 1}} = \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{4 + \frac{1}{{{n^3}}}}} = \frac{{2 + \lim \frac{3}{{{n^2}}}}}{{4 + \lim \frac{1}{{{n^3}}}}} = \frac{1}{2}\);

b) \(\lim \left[ {\sqrt n \left( {\sqrt {n + 5}  - \sqrt {n + 1} } \right)} \right] = \lim \frac{{\sqrt n \left( {\sqrt {n + 5}  - \sqrt {n + 1} } \right)\left( {\sqrt {n + 5}  + \sqrt {n + 1} } \right)}}{{\left( {\sqrt {n + 5}  + \sqrt {n + 1} } \right)}}\)

\( = \lim \frac{{4\sqrt n }}{{\sqrt {n + 5}  + \sqrt {n + 1} }} = \lim \frac{4}{{\sqrt {1 + \frac{5}{n}}  + \sqrt {1 + \frac{1}{n}} }} = \frac{4}{{\sqrt {1 + \lim \frac{5}{n}}  + \sqrt {1 + \lim \frac{1}{n}} }} = \frac{4}{{1 + 1}} = 2\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"