Đề bài
Cường độ ánh sáng tại độ sâu h (m) dưới một mặt hồ được tính bằng công thức \({I_h} = {I_o}.{\left( {\frac{1}{2}} \right)^{\frac{h}{4}}}\), trong đó \({I_o}\) là cường độ ánh sáng tại mặt hồ đó.
a) Cường độ ánh sáng tại độ sâu 1m bằng bao nhiêu phần trăm so với cường độ ánh sáng tại mặt hồ?
b) Cường độ ánh sáng tại độ sâu 3m gấp bao nhiêu lần cường độ ánh sáng tại độ sâu 6m?
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phép tính lũy thừa: \(\frac{{{a^\alpha }}}{{{a^\beta }}} = {a^{\alpha - \beta }}\) với \(a \ne 0\).
Lời giải chi tiết
a) Cường độ ánh sáng tại độ sâu 1m là: \({I_1} = {I_o}{\left( {\frac{1}{2}} \right)^{\frac{1}{4}}}\)
Do đó, \(\frac{{{I_1}}}{{{I_o}}} = \frac{{{I_o}{{\left( {\frac{1}{2}} \right)}^{\frac{1}{4}}}}}{{{I_o}}} = {\left( {\frac{1}{2}} \right)^{\frac{1}{4}}} \approx 84\% \)
Vậy cường độ ánh sáng tại độ sâu 1m bằng 84% so với cường độ ánh sáng tại mặt hồ
b) Cường độ ánh sáng tại độ sâu 3m là: \({I_3} = {I_o}{\left( {\frac{1}{2}} \right)^{\frac{3}{4}}}\)
Cường độ ánh sáng tại độ sâu 6m là: \({I_6} = {I_o}{\left( {\frac{1}{2}} \right)^{\frac{6}{4}}}\)
Ta có: \(\frac{{{I_3}}}{{{I_6}}} = \frac{{{I_o}{{\left( {\frac{1}{2}} \right)}^{\frac{3}{4}}}}}{{{I_o}{{\left( {\frac{1}{2}} \right)}^{\frac{6}{4}}}}} = {\left( {\frac{1}{2}} \right)^{ - \frac{3}{4}}} \approx 1,68\)
Vậy cường độ ánh sáng tại độ sâu 3m gấp 1,68 lần cường độ ánh sáng tại độ sâu 6m.