Giải bài 4 trang 22 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:07

Đề bài

Giải các bất phương trình sau:

a) \({\log _3}\left( {x + 4} \right) < 2\);

b) \({\log _{\frac{1}{2}}}x \ge 4\);

c) \({\log _{0,25}}\left( {x - 1} \right) \le  - 1\);

d) \({\log _5}\left( {{x^2} - 24x} \right) \ge 2\);

e) \(2{\log _{\frac{1}{4}}}\left( {x + 1} \right) \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right)\);

g) \(2{\log _3}\left( {x + 1} \right) \le 1 + {\log _3}\left( {x + 7} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về giải bất phương trình lôgarit để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(a > 1\)

\(0 < a < 1\)

\({\log _a}x > b\)

\(x > {a^b}\)

\(0 < x < {a^b}\)

\({\log _a}x \ge b\)

\(x \ge {a^b}\)

\(0 < x \le {a^b}\)

\({\log _a}x < b\)

\(0 < x < {a^b}\)

\(x > {a^b}\)

\({\log _a}x \le b\)

\(0 < x \le {a^b}\)

\(x \ge {a^b}\)

Chú ý:

+ Nếu \(a > 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}v\left( x \right) > 0\\u\left( x \right) > v\left( x \right)\end{array} \right.\)

+ Nếu \(0 < a < 1\) thì \({\log _a}u\left( x \right) > {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) < v\left( x \right)\end{array} \right.\)

Lời giải chi tiết

a) Điều kiện: \(x + 4 > 0 \) \( \Leftrightarrow x >  - 4\)

\({\log _3}\left( {x + 4} \right) < 2 \) \( \Leftrightarrow x + 4 < {3^2} \) \( \Leftrightarrow x < 5\)

Kết hợp với ĐK ta có: \( - 4 < x < 5\)

b) Điều kiện: \(x > 0\)

\({\log _{\frac{1}{2}}}x \ge 4 \) \( \Leftrightarrow x \le {\left( {\frac{1}{2}} \right)^4} \) \( \Leftrightarrow x \le \frac{1}{{16}}\)

Kết hợp với điều kiện ta có: \(0 < x \le \frac{1}{{16}}\).

c) Điều kiện: \(x - 1 > 0 \) \( \Leftrightarrow x > 1\)

\({\log _{0,25}}\left( {x - 1} \right) \le  - 1 \) \( \Leftrightarrow x - 1 \ge 0,{25^{ - 1}} \) \( \Leftrightarrow x - 1 \ge 4 \) \( \Leftrightarrow x \ge 5\)

Kết hợp với điều kiện ta có: \(x \ge 5\).

Vậy nghiệm của bất phương trình là: \(x \ge 5\)

d) Điều kiện: \({x^2} - 24x > 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x < 0\\x > 24\end{array} \right.\)

\({\log _5}\left( {{x^2} - 24x} \right) \ge 2 \) \( \Leftrightarrow {x^2} - 24x \ge {5^2} \) \( \Leftrightarrow {x^2} - 24x - 25 \ge 0 \) \( \Leftrightarrow \left( {x + 1} \right)\left( {x - 25} \right) \ge 0\)\( \) \( \Leftrightarrow \left[ \begin{array}{l}x \ge 25\\x \le  - 1\end{array} \right.\)

Kết hợp với điều kiện ta có: \(\left[ \begin{array}{l}x \ge 25\\x \le  - 1\end{array} \right.\)

Vậy nghiệm của bất phương trình là: \(x \ge 25;x \le  - 1\)

e) \(2{\log _{\frac{1}{4}}}\left( {x + 1} \right) \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right) \) \( \Leftrightarrow \left\{ \begin{array}{l}x >  - 1\left( {**} \right)\\{\log _{\frac{1}{4}}}{\left( {x + 1} \right)^2} \ge {\log _{\frac{1}{4}}}\left( {3x + 7} \right)\left( * \right)\end{array} \right.\)

(*)\( \) \( \Leftrightarrow {\left( {x + 1} \right)^2} \le 3x + 7 \) \( \Leftrightarrow {x^2} + 2x + 1 - 3x - 7 \le 0 \) \( \Leftrightarrow {x^2} - x - 6 \le 0\)

\( \) \( \Leftrightarrow \left( {x - 3} \right)\left( {x + 2} \right) \le 0 \) \( \Leftrightarrow  - 2 \le x \le 3\)

Kết hợp với (**) ta có: \( - 1 < x \le 3\)

Vậy nghiệm của bất phương trình là: \( - 1 < x \le 3\)

g) Điều kiện: \(x >  - 1\)

\(2{\log _3}\left( {x + 1} \right) \le 1 + {\log _3}\left( {x + 7} \right) \) \( \Leftrightarrow {\log _3}{\left( {x + 1} \right)^2} \le {\log _3}3 + {\log _3}\left( {x + 7} \right)\)

\( \) \( \Leftrightarrow {\log _3}{\left( {x + 1} \right)^2} \le {\log _3}3\left( {x + 7} \right) \) \( \Leftrightarrow {x^2} + 2x + 1 \le 3x + 21\)

\( \) \( \Leftrightarrow {x^2} - x - 20 \le 0 \) \( \Leftrightarrow \left( {x + 4} \right)\left( {x - 5} \right) \le 0 \) \( \Leftrightarrow  - 4 \le x \le 5\)

Kết hợp với điều kiện ta có: \( - 1 < x \le 5\)

Vậy nghiệm của bất phương trình là: \( - 1 < x \le 5\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"