Giải bài 1 trang 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:09

Đề bài

Tính giá trị của các biểu thức

a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}}\);

b) \(\log \sqrt 5  + \log \sqrt 2 \);

c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9}\);

d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9\).

Phương pháp giải - Xem chi tiết

a) Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\), \({a^\alpha }.{a^\beta } = {a^{\alpha  + \beta }}\)

b) Sử dụng kiến thức về phép tính lôgarit để tính: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

c) + Sử dụng kiến thức về lũy thừa với số mũ để tính: \({\left( {{a^\alpha }} \right)^\beta } = {a^{\alpha \beta }}\)

Sử dụng kiến thức về phép tính lôgarit để tính: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

d) Sử dụng kiến thức về phép tính lôgarit để tính: Cho các số dương a, b, N, \(a \ne 1,b \ne 1\) ta có: \({\log _a}N = \frac{{{{\log }_b}N}}{{{{\log }_b}a}}\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết

a) \({\left( {\frac{{27}}{8}} \right)^{\frac{5}{6}}}.{\left( {\frac{{{4^{\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{3.\frac{5}{6}}}{\left( {\frac{{{2^{2.\frac{3}{2}}}}}{{{3^3}}}} \right)^{\frac{1}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{2}{3}} \right)^{\frac{3}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2}}}.{\left( {\frac{3}{2}} \right)^{\frac{{ - 3}}{2}}} \) \( = {\left( {\frac{3}{2}} \right)^{\frac{5}{2} + \frac{{ - 3}}{2}}} \) \( = \frac{3}{2}\);

b) \(\log \sqrt 5  + \log \sqrt 2  \) \( = \log \left( {\sqrt 5 .\sqrt 2 } \right) \) \( = \log \sqrt {10}  \) \( = \log {10^{\frac{1}{2}}} \) \( = \frac{1}{2}\);

c) \({\left( {\frac{{16}}{{81}}} \right)^{ - \frac{3}{4}}} + {\log _5}\frac{9}{4} + {\log _5}\frac{4}{9} \) \( = {\left( {\frac{2}{3}} \right)^{4.\frac{{ - 3}}{4}}} + {\log _5}\left( {\frac{9}{4}.\frac{4}{9}} \right) \) \( = {\left( {\frac{2}{3}} \right)^{ - 3}} + {\log _5}1 \) \( = {\left( {\frac{3}{2}} \right)^3} \) \( = \frac{{27}}{8}\);

d) \({\log _2}7.{\log _3}16.{\log _9}3.{\log _7}9 \) \( = \frac{{{{\log }_9}7}}{{{{\log }_9}2}}.{\log _7}9.2{\log _3}4.\frac{1}{2}{\log _3}3 \) \( = \frac{1}{{{{\log }_7}9.{{\log }_9}2}}.{\log _7}9.{\log _3}4\)

\( \) \( = \frac{{2{{\log }_3}2}}{{\frac{1}{2}{{\log }_3}2}} \) \( = 4\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"