Giải câu hỏi trắc nghiệm trang 24, 25 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:09

Câu 1

Biết rằng \({2^a} = 9\). Tính giá trị của biểu thức \({\left( {\frac{1}{8}} \right)^{\frac{a}{6}}}\).

A. \(\frac{1}{2}\)

B. \(\frac{1}{3}\)

C. \(\frac{1}{9}\)

D. 3

Phương pháp giải:

Sử dụng kiến thức về phương trình mũ cơ bản để giải: \({a^x} = b\left( {a > 0,a \ne 1} \right)\)

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\).

Lời giải chi tiết:

Ta có: \({2^a} = 9 \Rightarrow a = {\log _2}9\).

Do đó, \({\left( {\frac{1}{8}} \right)^{\frac{a}{6}}} \) \( = {\left( {\frac{1}{{\sqrt 2 }}} \right)^a} \) \( = {\left( {\frac{1}{{\sqrt 2 }}} \right)^{{{\log }_2}9}} \) \( = {\left( {\sqrt 2 } \right)^{ - \frac{1}{2}{{\log }_{\sqrt 2 }}9}} \) \( = {\left( {\sqrt 2 } \right)^{ - {{\log }_{\sqrt 2 }}{9^{\frac{1}{2}}}}} \) \( = \frac{1}{{{{\left( {\sqrt 2 } \right)}^{{{\log }_{\sqrt 2 }}3}}}} \) \( = \frac{1}{3}\)

Chọn B


Câu 2

Giá trị của biểu thức \(2{\log _5}10 + {\log _5}0,25\) bằng

A. 0

B. 1

C. 2

D. 4

Phương pháp giải:

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:

\({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha  \in \mathbb{R}} \right)\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\), \({\log _a}{a^b} = b\)

Lời giải chi tiết:

\(2{\log _5}10 + {\log _5}0,25 \) \( = {\log _5}{10^2} + {\log _5}0,25 \) \( = {\log _5}\left( {100.0,25} \right) \) \( = {\log _5}{5^2} \) \( = 2\)

Chọn C.


Câu 3

Cho x và y là số dương. Khẳng định nào sau đây đúng?

A. \({2^{\log x + \log y}} = {2^{\log x}} + {2^{\log y}}\)

B. \({2^{\log \left( {x + y} \right)}} = {2^{\log x}}{.2^{\log y}}\)

C. \({2^{\log \left( {xy} \right)}} = {2^{\log x}}{.2^{\log y}}\)

D. \({2^{\log x.\log y}} = {2^{\log x}} + {2^{\log y}}\)

Phương pháp giải:

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có: \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết:

\({2^{\log x}}{.2^{\log y}} = {2^{\log x + \log y}} = {2^{\log \left( {xy} \right)}}\)

Chọn C


Câu 4

Biết rằng \(x = {\log _3}6 + {\log _9}4\). Giá trị của biểu thức \({3^x}\) bằng

A. 6

B. 12

C. 24

D. 48

Phương pháp giải:

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:

\({\log _a}{M^\alpha } = \alpha {\log _a}M\left( {\alpha  \in \mathbb{R}} \right)\), \({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết:

\(x \) \( = {\log _3}6 + {\log _9}4 \) \( = {\log _3}6 + \frac{1}{2}{\log _3}4 \) \( = {\log _3}6 + {\log _3}{4^{\frac{1}{2}}} \) \( = {\log _3}\left( {6.2} \right) \) \( = {\log _3}12\)

Do đó, \({3^x} \) \( = {3^{{{\log }_3}12}} \) \( = 12\)

Chọn B


Câu 5

Giá trị của biểu thức \(\left( {{{\log }_2}25} \right)\left( {{{\log }_5}8} \right)\) bằng

A. 4

B. \(\frac{1}{4}\)

C. 6

D. \(\frac{1}{6}\)

Phương pháp giải:

Sử dụng kiến thức về phép tính lôgarit để tính: Cho các số dương a, b, N, \(a \ne 1,b \ne 1\) ta có: \({\log _a}N = \frac{{{{\log }_b}N}}{{{{\log }_b}a}}\).

Lời giải chi tiết:

\(\left( {{{\log }_2}25} \right)\left( {{{\log }_5}8} \right) \) \( = {\log _2}25.\frac{{{{\log }_2}8}}{{{{\log }_2}5}} \) \( = 2{\log _2}5.\frac{{3{{\log }_2}2}}{{{{\log }_2}5}} \) \( = 6\)

Chọn C


Câu 6

Đặt \(\log 3 = a,\log 5 = b\). Khi đó, \({\log _{15}}50\) bằng

A. \(\frac{{1 + 2b}}{{a + b}}\)

B. \(\frac{{a - b}}{{a + b}}\)

C. \(\frac{{1 - b}}{{a + b}}\)

D. \(\frac{{1 + b}}{{a + b}}\)

Phương pháp giải:

Sử dụng kiến thức về phép tính lôgarit: Với \(a > 0,a \ne 1,M > 0,N > 0\) ta có:\({\log _a}\left( {MN} \right) = {\log _a}M + {\log _a}N\)

Lời giải chi tiết:

\({\log _{15}}50 \) \( = \frac{{\log 50}}{{\log 15}} \) \( = \frac{{\log \left( {5.10} \right)}}{{\log \left( {3.5} \right)}} \) \( = \frac{{\log 5 + \log 10}}{{\log 3 + \log 5}} \) \( = \frac{{b + 1}}{{a + b}}\)

Chọn D


Câu 7

Cho ba số \(a = {4^{0,9}},b = {8^{0,5}},c = {\left( {\frac{1}{2}} \right)^{ - 1,6}}\). Khẳng định nào sau đây đúng?

A. \(c > a > b\)

B. \(c > b > a\)

C. \(a > b > c\)

D. \(a > c > b\)

Phương pháp giải:

Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {a^x}\) nghịch biến trên \(\mathbb{R}\).

Lời giải chi tiết:

Ta có: \(a \) \( = {\left( {{2^2}} \right)^{0,9}} \) \( = {2^{1,8}},b \) \( = {\left( {{2^3}} \right)^{0,5}} \) \( = {2^{1,5}},c \) \( = {\left( {\frac{1}{2}} \right)^{ - 1,6}} \) \( = {2^{1,6}}\)

Vì \(2 > 1\) nên hàm số \(y \) \( = {2^x}\) đồng biến trên \(\mathbb{R}\). Mà \(1,8 > 1,6 > 1,5\) nên \({2^{1,8}} > {2^{1,6}} > {2^{1,5}}\) nên \(a > c > b\).

Chọn D


Câu 8

Cho ba số \(a =  - {\log _{\frac{1}{3}}}\frac{1}{2},b = {\log _{\frac{1}{3}}}\frac{1}{2}\) và \(c = \frac{1}{2}{\log _3}5\). Khẳng định nào sau đây đúng?

A. \(a < b < c\)

B. \(b < a < c\)

C. \(c < a < b\)

D. \(a < c < b\)

Phương pháp giải:

Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\). 

Lời giải chi tiết:

\(a \) \( =  - {\log _{\frac{1}{3}}}\frac{1}{2} \) \( = {\log _3}\frac{1}{2},b \) \( = {\log _{\frac{1}{3}}}\frac{1}{2} \) \( =  - {\log _3}{2^{ - 1}} \) \( = {\log _3}2,c \) \( = \frac{1}{2}{\log _3}5 \) \( = {\log _3}\sqrt 5 \)

Vì \(3 > 1\) nên hàm số \(y \) \( = {\log _3}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

Mà \(\frac{1}{2} < 2 < \sqrt 5 \) nên \({\log _3}\frac{1}{2} < {\log _3}2 < {\log _3}\sqrt 5 \). Do đó, \(a < b < c\)

Chọn A


Câu 9

Cho \(0 < a < 1,x = {\log _a}\sqrt 2  + {\log _a}\sqrt 3 ,\) \(y = \frac{1}{2}{\log _a}5,z = {\log _a}\sqrt {14}  - {\log _a}\sqrt 2 \). Khẳng định nào sau đây đúng?

A. \(x < y < z\)

B. \(y < x < z\)

C. \(z < x < y\)

D. \(z < y < x\)

Phương pháp giải:

- Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).

- So sánh với 0.

Lời giải chi tiết:

\(x = {\log _a}\sqrt 2  + {\log _a}\sqrt 3  = {\log _a}\left( {\sqrt 2 .\sqrt 3 } \right) = {\log _a}\sqrt 6 \), \(y = \frac{1}{2}{\log _a}5 = {\log _a}\sqrt 5 \)

\(z = {\log _a}\sqrt {14}  - {\log _a}\sqrt 2  = {\log _a}\frac{{\sqrt {14} }}{{\sqrt 2 }} = {\log _a}\sqrt 7 \)

Vì \(0 < a < 1\) nên hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).

Mà \(\sqrt 5  < \sqrt 6  < \sqrt 7 \) nên \({\log _a}\sqrt 7  < {\log _a}\sqrt 6  < {\log _a}\sqrt 5 \). Do đó, \(z < x < y\)

Chọn C


Câu 10

Cho ba số \(a = {\log _{\frac{1}{2}}}3,b = {\left( {\frac{1}{2}} \right)^{0,3}},c = {2^{\frac{1}{3}}}\). Khẳng định nào sau đây đúng?

A. \(a < b < c\)

B. \(a < c < b\)

C. \(c < a < b\)

D. \(b < a < c\)

Phương pháp giải:

- Sử dụng kiến thức về sự biến thiên của hàm số \(y = {\log _a}x\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {\log _a}x\) đồng biến trên \(\left( {0; + \infty } \right)\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {\log _a}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).

- Sử dụng kiến thức về sự biến thiên của hàm số mũ \(y = {a^x}\) để so sánh:

+ Nếu \(a > 1\) thì hàm số \(y = {a^x}\) đồng biến trên \(\mathbb{R}\).

+ Nếu \(0 < a < 1\) thì hàm số \(y = {a^x}\) nghịch biến trên \(\mathbb{R}\).

Lời giải chi tiết:

\(a = {\log _{\frac{1}{2}}}3 =  - {\log _2}3,b = {\left( {\frac{1}{2}} \right)^{0,3}} = {2^{ - 0,3}},c = {2^{\frac{1}{3}}}\)

Vì \(2 > 1\) nên hàm số \(y = {2^x}\) đồng biến trên \(\mathbb{R}\). Mà \( - 0,3 < \frac{1}{3}\) nên \({2^{ - 0,3}} < {2^{\frac{1}{3}}}\)

Hàm số \(y = {a^x}\) luôn nằm phía trên trục hoành nên \({2^{\frac{1}{3}}} > 0,{2^{ - 0,3}} > 0\)

Lại có: \( - {\log _2}3 < 0\)

Do đó, \( - {\log _2}3 < {2^{ - 0,3}} < {2^{\frac{1}{3}}}\) hay \(a < b < c\).

Chọn A


Câu 11

Giải phương trình \({3^{4x}} = \frac{1}{{3\sqrt 3 }}\)

A. \( - \frac{1}{4}\)

B. \( - \frac{3}{8}\)

C. \(\frac{3}{8}\)

D. \(\frac{1}{{12\sqrt 3 }}\)

Phương pháp giải:

Sử dụng kiến thức về giải phương trình mũ cơ bản để giải phương trình:

\({a^x} = b\left( {a > 0,a \ne 1} \right)\)

+ Nếu \(b \le 0\) thì phương trình vô nghiệm.

+ Nếu \(b > 0\) thì phương trình có nghiệm duy nhất \(x = {\log _a}b\)

Chú ý: Với \(a > 0,a \ne 1\) thì \({a^x} = {a^\alpha } \Leftrightarrow x = \alpha \), tổng quát hơn: \({a^{u\left( x \right)}} = {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) = v\left( x \right)\)

Lời giải chi tiết:

\({3^{4x}} = \frac{1}{{3\sqrt 3 }} \Leftrightarrow {\left( {\sqrt 3 } \right)^{2.4x}} = {\left( {\sqrt 3 } \right)^{ - 3}} \Leftrightarrow 8x =  - 3 \Leftrightarrow x = \frac{{ - 3}}{8}\)

Vậy phương trình có nghiệm \(x = \frac{{ - 3}}{8}\)

Chọn B


Câu 12

Tập nghiệm của bất phương trình \(0,{3^{3x - 1}} > 0,09\) là

A. \(\left( {1; + \infty } \right)\)

B. \(\left( { - \infty ;1} \right)\)

C. \(\left( { - \infty ; - \frac{1}{3}} \right)\)

D. \(\left( {0;1} \right)\)

Phương pháp giải:

Sử dụng kiến thức về giải bất phương trình chứa mũ để giải bất phương trình:

Bảng tổng kết về nghiệm của các bất phương trình:

Bất phương trình

\(b \le 0\)

\(b > 0\)

\(a > 1\)

\(0 < a < 1\)

\({a^x} > b\)

\(\forall x \in \mathbb{R}\)

\(x > {\log _a}b\)

\(x < {\log _a}b\)

\({a^x} \ge b\)

\(x \ge {\log _a}b\)

\(x \le {\log _a}b\)

\({a^x} < b\)

Vô nghiệm

\(x < {\log _a}b\)

\(x > {\log _a}b\)

\({a^x} \le b\)

\(x \le {\log _a}b\)

\(x \ge {\log _a}b\)

Chú ý:

+ Nếu \(a > 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) > v\left( x \right)\)

+ Nếu \(0 < a < 1\) thì \({a^{u\left( x \right)}} > {a^{v\left( x \right)}} \Leftrightarrow u\left( x \right) < v\left( x \right)\)

Lời giải chi tiết:

\(0,{3^{3x - 1}} > 0,09 \Leftrightarrow 0,{3^{3x - 1}} > 0,{3^2} \Leftrightarrow 3x - 1 < 2 \Leftrightarrow 3x < 3 \Leftrightarrow x < 1\)

Vậy tập nghiệm của bất phương trình là: \(S = \left( { - \infty ;1} \right)\)

Chọn B


Câu 13

Biết rằng \({\log _3}4.{\log _4}8.{\log _8}x = {\log _8}64\). Giá trị của x là

A. \(\frac{9}{2}\)

B. 9

C. 27

D. 81

Phương pháp giải:

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết:

Điều kiện: \(x > 0\).

\({\log _3}4.{\log _4}8.{\log _8}x = {\log _8}64 \) \( \Leftrightarrow \frac{{{{\log }_8}4}}{{{{\log }_8}3}}.\frac{{{{\log }_8}8}}{{{{\log }_8}4}}.{\log _8}x = {\log _8}64 \) \( \Leftrightarrow \frac{1}{{{{\log }_8}3}}{\log _8}x = {\log _8}{8^2}\)

\( \) \( \Leftrightarrow {\log _8}x = 2.{\log _8}3 \) \( \Leftrightarrow {\log _8}x = {\log _8}9 \) \( \Leftrightarrow x = 9\) (thỏa mãn)

Vậy phương trình có nghiệm là \(x = 9\)

Chọn B


Câu 14

Giải phương trình \({\log _5}\left( {4x + 5} \right) = 2 + {\log _5}\left( {x - 4} \right)\)

A. 9

B. 15

C. 4

D. 5

Phương pháp giải:

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết:

Điều kiện: \(x > 4\)

\({\log _5}\left( {4x + 5} \right) = 2 + {\log _5}\left( {x - 4} \right) \) \( \Leftrightarrow {\log _5}\left( {4x + 5} \right) = {\log _5}{5^2} + {\log _5}\left( {x - 4} \right)\)

\( \) \( \Leftrightarrow {\log _5}\left( {4x + 5} \right) = {\log _5}25\left( {x - 4} \right) \Leftrightarrow 4x + 5 = 25x - 100 \Leftrightarrow 21x = 105 \Leftrightarrow x = 5\) (tm)

Vậy phương trình có nghiệm là \(x = 5\)

Chọn D


Câu 15

Giả sử \(\alpha \) và \(\beta \) là hai nghiệm của phương trình \({\log _2}x.{\log _2}3x =  - \frac{1}{3}\). Khi đó tích \(\alpha \beta \) bằng

A. \(\frac{1}{3}\)

B. 3

C. \(\sqrt 3 \)

D. \({\log _2}3\)

Phương pháp giải:

Sử dụng kiến thức về giải phương trình lôgarit để giải phương trình:

\({\log _a}x = b\left( {a > 0,a \ne 1} \right)\)

Phương trình luôn có nghiệm duy nhất là \(x = {a^b}\).

Chú ý: Với \(a > 0,a \ne 1\) thì \({\log _a}u\left( x \right) = b \Leftrightarrow u\left( x \right) = {a^b}\), \({\log _a}u\left( x \right) = {\log _a}v\left( x \right) \Leftrightarrow \left\{ \begin{array}{l}u\left( x \right) > 0\\u\left( x \right) = v\left( x \right)\end{array} \right.\) (có thể thay \(u\left( x \right) > 0\) bằng \(v\left( x \right) > 0\))

Lời giải chi tiết:

Điều kiện: \(x > 0\)

\({\log _2}x.{\log _2}3x =  - \frac{1}{3} \Leftrightarrow {\log _2}x\left( {{{\log }_2}x + {{\log }_2}3} \right) =  - \frac{1}{3}\)

\( \Leftrightarrow 3{\left( {{{\log }_2}x} \right)^2} + 3{\log _2}x.{\log _2}3 + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}{\log _2}x = \frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\\{\log _2}x = \frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}x = {2^{\frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\left( {tm} \right)}}\\x = {2^{\frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}\left( {tm} \right)}}\end{array} \right.\)

Do đó, tích hai nghiệm là:

\(\alpha .\beta  = {2^{\frac{{ - 3{{\log }_2}3 + \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}}}{.2^{\frac{{ - 3{{\log }_2}3 - \sqrt {9{{\left( {{{\log }_2}3} \right)}^2} - 12} }}{6}}} = {2^{\frac{{ - 6{{\log }_2}3}}{6}}} = {2^{{{\log }_2}\frac{1}{3}}} = \frac{1}{3}\)

Chọn A

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"