Giải bài 3 trang 39 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:11

Đề bài

Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên \(\mathbb{R}\).

a) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x + 2\;khi\;x \le 2\\\frac{1}{{x + 1}}\;\;\;\;\;\;\;\;khi\;x > 2\end{array} \right.\);

b) \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} + 2x\;khi\;x \le 1\\\frac{2}{x} + 1\;\;\;\;\;khi\;x > 1\end{array} \right.\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa đạo hàm để xét tính liên tục và tính đạo hàm: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết

a) Vì \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{1}{{x + 1}} = \frac{1}{3} \ne \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {{x^2} - x + 2} \right) = 4\) nên f(x) gián đoạn tại \(x = 2\). Do đó, f(x) không có giới hạn tại 2, không có đạo hàm tại 2.

b) Vì \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {\frac{2}{x} + 1} \right) = 3;\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {{x^2} + 2x} \right) = 3;f\left( 1 \right) = 3\) nên \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = f\left( 1 \right)\). Do đó, hàm số f(x) liên tục tại \(x = 1\).

Lại có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\frac{2}{x} + 1 - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2\left( {x - 1} \right)}}{{x\left( {x - 1} \right)}} =  - 2;\)

\(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = 4\)

Suy ra \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} \ne \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Do đó, không tồn tại \(\mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}\)

Vậy không tồn tại đạo hàm tại \(x = 1\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"