Giải bài 2 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:11

Đề bài

Cho parabol (P) có phương trình \(y = {x^2}\). Tìm hệ số góc của tiếp tuyến của parabol (P)

a) Tại điểm \(\left( { - 1;1} \right)\);

b) Tại giao điểm của (P) với đường thẳng \(y =  - 3x + 2\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về ý nghĩa hình học của đạo hàm để tìm hệ số góc của tiếp tuyến:

Đạo hàm của hàm số \(y = f\left( x \right)\) tại điểm \({x_0}\) là hệ số góc của tiếp tuyến \({M_0}T\) với đồ thị (C) của hàm số tại điểm \({M_0}\left( {{x_0};f\left( {{x_0}} \right)} \right)\).

Tiếp tuyến \({M_0}T\) có phương trình là: \(y - f\left( {{x_0}} \right) = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right)\)

Lời giải chi tiết

Với \({x_0}\) bất kì ta có:

\(y'\left( {{x_0}} \right) \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{{x^2} - x_0^2}}{{x - {x_0}}} \) \( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)\left( {x + {x_0}} \right)}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \left( {x + {x_0}} \right) = 2{x_0}\)

Do đó, \(y' = 2x\)

a) Hệ số góc của tiếp tuyến của parabol (P) tại điểm \(\left( { - 1;1} \right)\) là: \(y'\left( { - 1} \right) = 2.\left( { - 1} \right) =  - 2\)

b) Hoành độ giao điểm của (P) với đường thẳng \(y =  - 3x + 2\) là nghiệm của phương trình: \({x^2} =  - 3x + 2 \) \( \Leftrightarrow {x^2} + 3x - 2 = 0 \) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{{ - 3 + \sqrt {17} }}{2}\\x = \frac{{ - 3 - \sqrt {17} }}{2}\end{array} \right.\)

Do đó, \(k = y'\left( {\frac{{ - 3 + \sqrt {17} }}{2}} \right) =  - 3 + \sqrt {17}\), \(k = y'\left( {\frac{{ - 3 - \sqrt {17} }}{2}} \right) =  - 3 - \sqrt {17} \)

Vậy hệ số góc tại giao điểm của (P) với đường thẳng \(y =  - 3x + 2\) là: \(k =  - 3 + \sqrt {17} ;k =  - 3 - \sqrt {17} \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"