Giải bài 1 trang 38 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:11

Đề bài

Cho hàm số \(y = \sqrt[3]{x}\). Chứng minh rằng \(y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về định nghĩa đạo hàm để chứng minh: Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng \(\left( {a;b} \right)\) và \({x_0} \in \left( {a;b} \right)\). Nếu tồn tại giới hạn hữu hạn \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\) thì giới hạn này được gọi là đạo hàm của hàm số f(x) tại \({x_0}\), kí hiệu là \(f'\left( {{x_0}} \right)\) hoặc \(y'\left( {{x_0}} \right)\). Vậy \(f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}}\)

Lời giải chi tiết

Với bất kì \({x_0} \ne 0\) ta có: \(y'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{y\left( x \right) - y\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sqrt[3]{x} - \sqrt[3]{{{x_0}}}}}{{x - {x_0}}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {\sqrt[3]{x} - \sqrt[3]{{{x_0}}}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\left( {x - {x_0}} \right)}}{{\left( {x - {x_0}} \right)\left[ {{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}} \right]}}\)

\( = \mathop {\lim }\limits_{x \to {x_0}} \frac{1}{{{{\left( {\sqrt[3]{x}} \right)}^2} + \sqrt[3]{x}\sqrt[3]{{{x_0}}} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{{{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2} + {{\left( {\sqrt[3]{{{x_0}}}} \right)}^2}}} = \frac{1}{{3\sqrt[3]{{x_0^2}}}}\)

Vậy \(y'\left( x \right) = \frac{1}{{3\sqrt[3]{{{x^2}}}}}\left( {x \ne 0} \right)\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"