Đề bài
Một chuyển động thẳng xác định bởi phương trình \(s\left( t \right) = - 2{t^3} + 75t + 3\), trong đó s tính bằng mét và t là thời gian tính bằng giây. Tính vận tốc và gia tốc của chuyển động tại thời điểm \(t = 3\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về ý nghĩa của đạo hàm và đạo hàm cấp hai:
+ Nếu hàm số \(s = f\left( t \right)\) biểu thị quãng đường di chuyển của vật theo thời gian t thì \(f'\left( {{t_0}} \right)\) biểu thị tốc độ tức thời của chuyển động tại thời điểm \({t_0}\).
+ Đạo hàm cấp hai \(f''\left( t \right)\) là gia tốc tức thời tại thời điểm t của vật chuyển động có phương trình \(s = f\left( t \right)\).
Lời giải chi tiết
Ta có: \(s'\left( t \right) = - 6{t^2} + 75,s''\left( t \right) = - 12t\)
Vận tốc của chuyển động tại thời điểm \(t = 3\) là: \(s'\left( 3 \right) = - {6.3^2} + 75 = 21\left( {m/s} \right)\)
Gia tốc của chuyển động tại thời điểm \(t = 3\) là: \(s''\left( 3 \right) = - 12.3 = - 36\left( {m/{s^2}} \right)\)