Giải bài 7 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:30

Đề bài

Cho hình lăng trụ đều ABC. A’B’C’ có cạnh đáy bằng a. Biết \(d\left( {A,\left( {A'BC} \right)} \right) = \frac{{a\sqrt {57} }}{{12}}\). Tính \({V_{ABC.A'B'C'}}\).

Phương pháp giải - Xem chi tiết

+ Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)).

+ Sử dụng kiến thức về thể tích khối lăng trụ: Thể tích khối lăng trụ bằng diện tích đáy nhân với chiều cao: \(V = S.h\)

Lời giải chi tiết

Vì ABC. A’B’C’ là lăng trụ đều \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot BC\)

Gọi I là trung điểm của BC. Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, \(AI \bot BC\)

Ta có: \(A'A \bot BC\), \(AI \bot BC\) nên \(BC \bot \left( {A'AI} \right)\)

Trong mặt phẳng (A’AI), kẻ \(AH \bot A'I\left( {H \in A'I} \right) \Rightarrow BC \bot AH\)

Vì \(BC \bot AH,AH \bot A'I\) nên \(AH \bot \left( {A'BC} \right)\). Do đó, \(d\left( {A,\left( {A'BC} \right)} \right) = AH = \frac{{a\sqrt {57} }}{{12}}\).

Tam giác ABC đều nên AI là đường trung tuyến đồng thời là đường cao. Do đó, tam giác ABI vuông tại I. Suy ra: \(AI = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)

Vì \(A'A \bot \left( {ABC} \right) \Rightarrow A'A \bot AI\)

Tam giác A’AI vuông tại A, AH là đường cao có:

\(\frac{1}{{A'{A^2}}} = \frac{1}{{A{H^2}}} - \frac{1}{{A{I^2}}} = \frac{{144}}{{57{a^2}}} - \frac{4}{{3{a^2}}} = \frac{{68}}{{57{a^2}}} \\ \Rightarrow A'A = \frac{{a\sqrt {969} }}{{34}}\)

Thể tích lăng trụ ABC. A’B’C’ là:  \({V_{ABC.A'B'C'}} = A'A.{S_{ABC}} = A'A.\frac{1}{2}.AI.BC \\ = \frac{1}{2}\frac{{a\sqrt {969} }}{{34}}.\frac{{a\sqrt 3 }}{2}.a = \frac{{3{a^3}\sqrt {323} }}{{136}}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"