Giải bài 1 trang 68 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:34

Đề bài

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Tính khoảng cách từ điểm A đến mặt phẳng (SBC) theo a, biết \(SA = \frac{{a\sqrt 6 }}{2}\).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về khoảng cách từ điểm đến mặt phẳng để tính: Nếu H là hình chiếu vuông góc của điểm M trên mặt phẳng (P) thì độ dài đoạn thẳng MH được gọi là khoảng cách từ điểm M đến (P), kí hiệu d(M; (P)). 

Lời giải chi tiết

Gọi E là trung điểm của BC. Vì tam giác ABC đều nên AE là đường trung tuyến đồng thời là đường cao. Do đó, \(AE \bot BC\)

Ta có: \(SA \bot \left( {ABC} \right),BC \subset \left( {ABC} \right) \Rightarrow SA \bot BC\), mà \(AE \bot BC\).  Suy ra: \(BC \bot \left( {SAE} \right)\)

Kẻ \(AF \bot SE\left( {S \in SE} \right)\). Vì \(BC \bot \left( {SAE} \right)\)\( \Rightarrow BC \bot AF\)

Ta có: \(BC \bot AF,AF \bot SE,\) BC và SE cắt nhau tại E và nằm trong mặt phẳng (SBC) nên \(AF \bot \left( {SBC} \right)\). Khi đó, AF là khoảng cách từ A đến mặt phẳng (SBC).

Vì tam giác ABC đều nên \(\widehat {ABC} = {60^0}\).

Tam giác ABE vuông tại E có: \(AE = AB.\sin \widehat {ABC} = \frac{{a\sqrt 3 }}{2}\)

Vì \(SA \bot \left( {ABC} \right),AE \subset \left( {ABC} \right) \Rightarrow SA \bot AE\)

Tam giác AES vuông tại A, có AF là đường cao nên:

\(\frac{1}{{A{F^2}}} = \frac{1}{{A{E^2}}} + \frac{1}{{S{A^2}}} = \frac{4}{{3{a^2}}} + \frac{4}{{6{a^2}}} = \frac{2}{{{a^2}}} \Rightarrow AF = \frac{{a\sqrt 2 }}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"