Giải bài 2 trang 73 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:36

Đề bài

Cho hình chóp S.ABC có đáy là tam giác đều cạnh bằng 3. Hình chiếu vuông góc của S trên mặt phẳng đáy trùng với trung điểm I của cạnh AB. Biết rằng mặt bên (SAB) là tam giác vuông cân tại S. Xác định và tính góc giữa:

a) SA và (ABC);

b) SC và (SAB).

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về góc giữa đường thẳng và mặt phẳng để tính:

+ Nếu đường thẳng a vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a với (P) bằng \({90^0}\).

+ Nếu đường thẳng a không vuông góc với mặt phẳng (P) thì góc giữa đường thẳng a và hình chiếu a’ của a trên (P) gọi là góc giữa đường thẳng a và (P). 

Lời giải chi tiết

a) Vì \(SI \bot \left( {ABC} \right)\) nên I là hình chiếu của S trên mặt phẳng (ABC).

Do đó, \(\left( {SA,\left( {ABC} \right)} \right) \) \( = \left( {SA,AI} \right) \) \( = \widehat {SAI}\)

Vì tam giác SAB vuông cân tại S nên \(\widehat {SAI} \) \( = {45^0}\)

b) Tam giác ABC đều nên CI là đường trung tuyến đồng thời là đường cao. Do đó, \(IC \bot AB\). Lại có: \(SI \bot IC\left( {do\;SI \bot \left( {ABC} \right)} \right)\) nên \(IC \bot \left( {SAB} \right)\)

Suy ra, I là hình chiếu của C lên mặt phẳng (SAB). Do đó, \(\left( {SC,\left( {SAB} \right)} \right) \) \( = \left( {SC,SI} \right) \) \( = \widehat {CSI}\)

Tam giác ABC đều nên \(IC \) \( = \frac{{AB\sqrt 3 }}{2} \) \( = \frac{{3\sqrt 3 }}{3}\)

Tam giác SAB vuông cân tại S nên SI là đường trung tuyến nên \(SI \) \( = AI \) \( = \frac{1}{2}AB \) \( = \frac{3}{2}\)

Tam giác SIC vuông tại I nên \(\tan \widehat {ISC} \) \( = \frac{{IC}}{{SI}} \) \( = \frac{{\frac{{3\sqrt 3 }}{2}}}{{\frac{3}{2}}} \) \( = \sqrt 3  \) \( \Rightarrow \widehat {ISC} \) \( = {60^0}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"