Giải bài 9 trang 100 sách bài tập toán 11 - Chân trời sáng tạo tập 2

2024-09-14 13:08:51

Đề bài

Gieo ngẫu nhiên 3 con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố A: “Tích số chấm xuất hiện trên mỗi con xúc xắc chia hết cho 15”.

Phương pháp giải - Xem chi tiết

Sử dụng kiến thức về quy tắc cộng cho hai biến cố bất kì: Cho hai biến cố A và B. Khi đó, \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right)\).

Lời giải chi tiết

Gọi B là biến cố: “Tích số chấm xuất hiện trên mỗi con xúc xắc không chia hết cho 5”, C là biến cố: “Tích số chấm xuất hiện trên mỗi con xúc xắc không chia hết cho 3”.

Khi đó, A là biến cố đối của biến cố \(B \cup C\).

Biến cố B xảy ra khi không xuất hiện mặt 5 chấm trên mỗi con xúc xắc.

Xác suất của biến cố B là: \(P\left( B \right) \) \( = {\left( {\frac{5}{6}} \right)^3}\)

Biến cố C xảy ra khi không xuất hiện mặt 3 chấm và mặt 6 chấm trên mỗi con xúc xắc.

Xác suất của biến cố C là: \(P\left( C \right) \) \( = {\left( {\frac{4}{6}} \right)^3}\)

BC là biến cố: “Tích số chấm xuất hiện trên mỗi con xúc xắc không chia hết cho 3 và 5”. Biến cố BC xảy ra khi xuất hiện mặt 1 chấm, 2 chấm, 4 chấm trên mỗi con xúc xắc.

Xác suất của biến cố BC là: \(P\left( {BC} \right) \) \( = {\left( {\frac{3}{6}} \right)^3}\)

Vậy xác suất của biến cố A là:

\(P\left( A \right) \) \( = 1 - P\left( {B \cup C} \right) \) \( = 1 - \left[ {P\left( B \right) + P\left( C \right) - P\left( {BC} \right)} \right] \) \( = 1 - \left[ {{{\left( {\frac{5}{6}} \right)}^3} + {{\left( {\frac{4}{6}} \right)}^3} - {{\left( {\frac{3}{6}} \right)}^3}} \right] \) \( = \frac{1}{4}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"