Giải bài 12 trang 11 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:03

Đề bài

Chứng minh rằng trong tam giác \(ABC\), ta có:

a) \(\sin B = \sin \left( {A + C} \right)\)                                  

b) \(\cos C =  - \cos \left( {A + B + 2C} \right)\)

c) \(\sin \frac{A}{2} = \cos \frac{{B + C}}{2}\)                               

d) \(\tan \frac{{A + B - 2C}}{2} = \cot \frac{{3C}}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng định lí tổng 3 góc trong một tam giác: \(A + B + C = \pi \)

a) Sử dụng công thức \(\sin x = \sin \left( {\pi  - x} \right)\)

b) Sử dụng công thức \(\cos \left( {\pi  + x} \right) =  - \cos x\)

c) Sử dụng công thức \(\sin x = \cos \left( {\frac{\pi }{2} - x} \right)\)

d) Sử dụng công thức \(\tan x = \cot \left( {\frac{\pi }{2} - x} \right)\)

Lời giải chi tiết

Trong tam giác \(ABC\), ta có \(A + B + C = \pi \).

a) Do \(A + B + C = \pi  \Rightarrow A + C = \pi  - B \Rightarrow \sin \left( {A + C} \right) = \sin \left( {\pi  - B} \right) = \sin B\).

b) Do \(A + B + C = \pi  \Rightarrow A + B + 2C = \pi  + C\)

\( \Rightarrow \cos \left( {A + B + 2C} \right) = \cos \left( {\pi  + C} \right) =  - \cos C\)

c) Do \(A + B + C = \pi  \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{B + C}}{2} = \frac{\pi }{2} - \frac{A}{2}\)

\( \Rightarrow \sin \frac{A}{2} = \cos \left( {\frac{\pi }{2} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

d)

Do \(A + B + C = \pi  \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{A + B - 2C}}{2} = \frac{{A + B + C - 3C}}{2} = \frac{\pi }{2} - \frac{{3C}}{2}\)

\( \Rightarrow \tan \frac{{A + B - 2C}}{2} = \tan \left( {\frac{\pi }{2} - \frac{{3C}}{2}} \right) = \cot \frac{{3C}}{2}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"