Giải bài 10 trang 11 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:04

Đề bài

Cho \(\tan x =  - 2\). Tính giá trị của mỗi biểu thức sau:

a)    \(A = \frac{{3\sin x - 5\cos x}}{{4\sin x + \cos x}}\)

b)    \(B = \frac{{2{{\sin }^2}x - 3\sin x\cos x - {{\cos }^2}x}}{{{{\sin }^2}x + \sin x\cos x}}\)

Phương pháp giải - Xem chi tiết

Do \(\tan x\) xác định nên \(\cos x \ne 0\).

Chia cả tử và mẫu của \(A\) cho \(\cos x\), của \(B\) cho \({\cos ^2}x\).

Sử dụng công thức \(\tan x = \frac{{\sin x}}{{\cos x}}\).

Lời giải chi tiết

Do \(\tan x\) xác định nên \(\cos x \ne 0\).

a) Chia cả tử và mẫu của \(A\) cho \(\cos x \ne 0\), ta có:

\(A = \frac{{3\frac{{\sin x}}{{\cos x}} - 5\frac{{\cos x}}{{\cos x}}}}{{4\frac{{\sin x}}{{\cos x}} + \frac{{\cos x}}{{\cos x}}}} = \frac{{3\tan x - 5}}{{4\tan x + 1}} = \frac{{3\left( { - 2} \right) - 5}}{{4\left( { - 2} \right) + 1}} = \frac{{11}}{7}\)

b) Chia cả tử và mẫu của \(B\) cho \({\cos ^2}x \ne 0\), ta có:

\(B = \frac{{2\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - 3\frac{{\sin x\cos x}}{{{{\cos }^2}x}} - \frac{{{{\cos }^2}x}}{{{{\cos }^2}x}}}}{{\frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} + \frac{{\sin x\cos x}}{{{{\cos }^2}x}}}} = \frac{{2{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} - 3\frac{{\sin x}}{{\cos x}} - 1}}{{{{\left( {\frac{{\sin x}}{{\cos x}}} \right)}^2} + \frac{{\sin x}}{{\cos x}}}}\)

\( = \frac{{2{{\tan }^2}x - 3\tan x - 1}}{{{{\tan }^2}x + \tan x}} = \frac{{2{{\left( { - 2} \right)}^2} - 3\left( { - 2} \right) - 1}}{{{{\left( { - 2} \right)}^2} + \left( { - 2} \right)}} = \frac{{13}}{2}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"