Giải bài 29 trang 16 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:08

Đề bài

Cho tam giác \(ABC\), chứng minh rằng:

a)    \(\tan A + \tan B + \tan C = \tan A{\rm{ }}{\rm{. }}\tan B{\rm{ }}{\rm{. }}\tan C\)

(với điều kiện tam giác \(ABC\) không vuông)

b)    \(\tan \frac{A}{2}{\rm{ }}{\rm{. }}\tan \frac{B}{2} + \tan \frac{B}{2}{\rm{ }}{\rm{. }}\tan \frac{C}{2} + \tan \frac{C}{2}{\rm{ }}{\rm{. }}\tan \frac{A}{2} = 1\)

Phương pháp giải - Xem chi tiết

Sử dụng định lí tổng ba góc trong một tam giác: \(A + B + C = \pi \)

Sử dụng công thức \(\tan \left( {a + b} \right) = \frac{{\tan a + \tan b}}{{1 - \tan a\tan b}}\)

Lời giải chi tiết

Trong tam giác \(ABC\), ta có \(A + B + C = \pi \).

a) Do \(A + B + C = \pi  \Rightarrow A + B = \pi  - C \Rightarrow \tan \left( {A + B} \right) = \tan \left( {\pi  - C} \right)\)

Vì \(\tan \left( {A + B} \right) = \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}}\), \(\tan \left( {\pi  - C} \right) = \tan \left( { - C} \right) =  - \tan C\), nên:

\(\tan \left( {A + B} \right) = \tan \left( {\pi  - C} \right) \Rightarrow \frac{{\tan A + \tan B}}{{1 - \tan A\tan B}} =  - \tan C\)

\( \Rightarrow \tan A + \tan B =  - \left( {1 - \tan A\tan B} \right)\tan C\)

\( \Rightarrow \tan A + \tan B =  - \tan C + \tan A\tan B\tan C \Rightarrow \tan A + \tan B + \tan C = \tan A\tan B\tan C\)

Bài toán được chứng minh.

b) Ta có:

\(A + B + C = \pi  \Rightarrow \frac{{A + B + C}}{2} = \frac{\pi }{2} \Rightarrow \frac{{A + B}}{2} = \frac{\pi }{2} - \frac{C}{2} \Rightarrow \tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right)\)Do \(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}}\) và \(\tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) = \cot \frac{C}{2} = \frac{1}{{\tan \frac{C}{2}}}\), nên:

\(\tan \left( {\frac{A}{2} + \frac{B}{2}} \right) = \tan \left( {\frac{\pi }{2} - \frac{C}{2}} \right) \Rightarrow \frac{{\tan \frac{A}{2} + \tan \frac{B}{2}}}{{1 - \tan \frac{A}{2}\tan \frac{B}{2}}} = \frac{1}{{\tan \frac{C}{2}}}\)

\( \Rightarrow \left( {\tan \frac{A}{2} + \tan \frac{B}{2}} \right)\tan \frac{C}{2} = 1 - \tan \frac{A}{2}\tan \frac{B}{2} \Rightarrow \tan \frac{A}{2}\tan \frac{B}{2} + \tan \frac{B}{2}\tan \frac{C}{2} + \tan \frac{C}{2}\tan \frac{A}{2} = 1\)

Bài toán được chứng minh.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"