Giải bài 27 trang 15 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:08

Đề bài

Cho \(\tan \frac{a}{2} = \frac{1}{{\sqrt 2 }}\). Tính \(\sin a\), \(\cos a\), \(\tan a\).

Phương pháp giải - Xem chi tiết

Sử dụng công thức \(\sin 2x = 2\sin x.\cos x = \frac{{2\sin x\cos x}}{1}\) và \({\sin ^2}x + {\cos ^2}x = 1\) để tính \(\sin a\).

Sử dụng công thức \(\cos 2x = {\cos ^2}x - {\sin ^2}x = \frac{{{{\cos }^2}x - {{\sin }^2}x}}{1}\) và \({\sin ^2}x + {\cos ^2}x = 1\) để tính \(\cos a\).

Sử dụng công thức \(\tan a = \frac{{\sin a}}{{\cos a}}\) để tính \(\tan a\).

Lời giải chi tiết

Do \(\tan \frac{a}{2}\) xác định, nên \(\cos \frac{a}{2} \ne 0\).

Ta có:

\(\sin a = \sin \left( {2.\frac{a}{2}} \right) = 2\sin \frac{a}{2}\cos \frac{a}{2} = \frac{{2\sin \frac{a}{2}\cos \frac{a}{2}}}{1} = \frac{{2\sin \frac{a}{2}\cos \frac{a}{2}}}{{{{\sin }^2}\frac{a}{2} + {{\cos }^2}\frac{a}{2}}}\).

Chia cả tử và mẫu của biểu thức trên cho \({\cos ^2}\frac{a}{2} \ne 0\), ta được:

\(\sin a = \frac{{2\frac{{\sin \frac{a}{2}}}{{\cos \frac{a}{2}}}}}{{\frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}} + 1}} = \frac{{2\tan \frac{a}{2}}}{{{{\tan }^2}\frac{a}{2} + 1}} = \frac{{2.\frac{1}{{\sqrt 2 }}}}{{{{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2} + 1}} = \frac{{2\sqrt 2 }}{3}\)

Tưởng tự, ta có:

\(\cos a = {\cos ^2}\frac{a}{2} - {\sin ^2}\frac{a}{2} = \frac{{{{\cos }^2}\frac{a}{2} - {{\sin }^2}\frac{a}{2}}}{1} = \frac{{{{\cos }^2}\frac{a}{2} - {{\sin }^2}\frac{a}{2}}}{{{{\sin }^2}\frac{a}{2} + {{\cos }^2}\frac{a}{2}}}\)

          \( = \frac{{1 - \frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}}}}{{\frac{{{{\sin }^2}\frac{a}{2}}}{{{{\cos }^2}\frac{a}{2}}} + 1}} = \frac{{1 - {{\tan }^2}\frac{a}{2}}}{{1 + {{\tan }^2}\frac{a}{2}}} = \frac{{1 - {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}}{{1 + {{\left( {\frac{1}{{\sqrt 2 }}} \right)}^2}}} = \frac{1}{3}\)

Từ đó, \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{2\sqrt 2 }}{3} :\frac{1}{3} = 2\sqrt 2 \)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"