Giải bài 16 trang 14 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:11

Đề bài

Nếu \(\sin \alpha  = \frac{1}{{\sqrt 3 }}\) với \(0 < \alpha  < \frac{\pi }{2}\) thì giá trị của \(\cos \left( {\alpha  + \frac{\pi }{3}} \right)\) bằng:

A. \(\frac{{\sqrt 6 }}{6} - \frac{1}{2}\)                        

B. \(\sqrt 6  - 3\)            

C. \(\frac{{\sqrt 6 }}{6} - 3\)                          

D. \(\sqrt 6  - \frac{1}{2}\)

Phương pháp giải - Xem chi tiết

Sử dụng công thức \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\) và điều kiện \(0 < \alpha  < \frac{\pi }{2}\) để tính \(\cos \alpha \).

Sử dụng công thức \(\cos \left( {a + b} \right) = \cos a.\cos b - \sin a.\sin b\)

Lời giải chi tiết

Do \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1 \Rightarrow {\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = 1 - {\left( {\frac{1}{{\sqrt 3 }}} \right)^2} = \frac{2}{3} \Rightarrow \cos \alpha  =  \pm \frac{{\sqrt 6 }}{3}\)

Vì \(0 < \alpha  < \frac{\pi }{2} \Rightarrow \cos \alpha  > 0 \Rightarrow \cos \alpha  = \frac{{\sqrt 6 }}{3}\)

Ta có \(\cos \left( {\alpha  + \frac{\pi }{3}} \right) = \cos \alpha .\cos \frac{\pi }{3} - \sin \alpha .\sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \frac{1}{{\sqrt 3 }}.\frac{{\sqrt 3 }}{2} = \frac{{\sqrt 6 }}{6} - \frac{1}{2}\)

Đáp án đúng là A.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"