Giải bài 61 trang 31 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:20

Đề bài

Dùng đồ thị hàm số \(y = \sin x\), \(y = \cos x\) để xác định số nghiệm của phương trình:

a)    \(5\sin x - 3 = 0\) trên đoạn \(\left[ { - \pi ;4\pi } \right]\)

b)    \(\sqrt 2 \cos x + 1 = 0\) trên khoảng \(\left( { - 4\pi ;0} \right)\)

Phương pháp giải - Xem chi tiết

a) Biến đổi phương trình thành \(\sin x = \frac{3}{5}\).

Vẽ đồ thị hàm số \(y = \sin x\), đường thẳng \(y = \frac{3}{5}\) và đếm số giao điểm có hoành độ thuộc đoạn \(\left[ { - \pi ;4\pi } \right]\)

b) Biến đổi phương trình thành \(\cos x = \frac{{ - 1}}{{\sqrt 2 }}\).

Vẽ đồ thị hàm số \(y = \cos x\), đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) và đếm số giao điểm có hoành độ thuộc khoảng \(\left( { - 4\pi ;0} \right)\)

Lời giải chi tiết

a) Ta có \(5\sin x - 3 = 0 \Leftrightarrow \sin x = \frac{3}{5}\).

Nghiệm của phương trình trên chính là hoành độ các giao điểm của đường thẳng \(y = \frac{3}{5}\) và đồ thị hàm số \(y = \sin x\) như hình vẽ dưới đây.

 

Dựa vào hình vẽ, ta thấy đường thẳng \(y = \frac{3}{5}\) cắt đồ thị hàm số \(y = \sin x\) tại 4 điểm có hoành độ nằm trên đoạn \(\left[ { - \pi ;4\pi } \right]\). Có nghĩa là, phương trình \(5\sin x - 3 = 0\) có 4 nghiệm trên đoạn \(\left[ { - \pi ;4\pi } \right]\).

b) Ta có \(\sqrt 2 \cos x + 1 = 0 \Leftrightarrow \cos x = \frac{{ - 1}}{{\sqrt 2 }}\)

Nghiệm của phương trình trên chính là hoành độ các giao điểm của đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) và đồ thị hàm số \(y = \cos x\) như hình vẽ dưới đây.

 

Dựa vào hình vẽ, ta thấy đường thẳng \(y = \frac{{ - 1}}{{\sqrt 2 }}\) cắt đồ thị hàm số \(y = \cos x\) tại 4 điểm có hoành độ nằm trên khoảng \(\left( { - 4\pi ;0} \right)\). Có nghĩa là, phương trình \(\sqrt 2 \cos x + 1 = 0\) có 4 nghiệm trên khoảng \(\left( { - 4\pi ;0} \right)\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"