Giải bài 71 trang 32 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:25

Đề bài

Cho \(\sin \left( {{{45}^o} - \alpha } \right) = \frac{1}{{2\sqrt 2 }}\).

a)    Chứng minh rằng \({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \sin 2\alpha }}{2}\).

b)    Tính \(\sin 2\alpha \).

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức \({\sin ^2}x = \frac{{1 - \cos 2x}}{2}\), \(\sin x = \cos \left( {{{90}^o} - x} \right)\).

b) Áp dụng kết quả câu a.

Lời giải chi tiết

a) Ta có: \({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \cos \left[ {2\left( {{{45}^o} - \alpha } \right)} \right]}}{2} = \frac{{1 - \cos \left( {{{90}^o} - 2\alpha } \right)}}{2} = \frac{{1 - \sin 2\alpha }}{2}\)

Bài toán được chứng minh.

b) Theo câu a ta có:

\({\sin ^2}\left( {{{45}^o} - \alpha } \right) = \frac{{1 - \sin 2\alpha }}{2} \Rightarrow \sin 2\alpha  = 1 - 2{\sin ^2}\left( {{{45}^o} - \alpha } \right)\)

Do \(\sin \left( {{{45}^o} - \alpha } \right) = \frac{1}{{2\sqrt 2 }}\) nên \(\sin 2\alpha  = 1 - 2{\left( {\frac{1}{{2\sqrt 2 }}} \right)^2} = \frac{3}{4}\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"