Giải bài 10 trang 46 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:30

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\), biết \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\).

a)    Viết bốn số hạng đầu của dãy số.

b)    Chứng minh rằng \({u_{n + 4}} = {u_n}\) với mọi \(n \ge 1\).

c)     Tính tổng 12 số hạng đầu của dãy số.

Phương pháp giải - Xem chi tiết

a) Thay \(n = 1,{\rm{ }}2,{\rm{ 3, 4}}\) vào công thức \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\) để xác định 4 số hạng đầu của dãy số.

b) Thay \(n\) bởi \(n + 4\) vào công thức \({u_n} = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right]\) để xác định \({u_{n + 4}}\) và chú ý rằng \(\sin \left( {x + k2\pi } \right) = \sin x\).

c) Sử dụng kết quả câu b, ta có \({u_1} = {u_5} = {u_9}\), \({u_2} = {u_6} = {u_{10}}\),\({u_3} = {u_7} = {u_{11}}\), \({u_4} = {u_8} = {u_{12}}\). Do đó tổng 12 số hạng đầu tiên bằng \(3\left( {{u_1} + {u_2} + {u_3} + {u_4}} \right)\).

Lời giải chi tiết

a) Ta có:

\({u_1} = \sin \left[ {\left( {2.1 - 1} \right)\frac{\pi }{4}} \right] = \sin \frac{\pi }{4} = \frac{{\sqrt 2 }}{2}\)

\({u_2} = \sin \left[ {\left( {2.2 - 1} \right)\frac{\pi }{4}} \right] = \sin \frac{{3\pi }}{4} = \frac{{\sqrt 2 }}{2}\)

\({u_3} = \sin \left[ {\left( {2.3 - 1} \right)\frac{\pi }{4}} \right] = \sin \frac{{5\pi }}{4} =  - \frac{{\sqrt 2 }}{2}\)

\({u_4} = \sin \left[ {\left( {2.4 - 1} \right)\frac{\pi }{4}} \right] = \sin \frac{{7\pi }}{4} =  - \frac{{\sqrt 2 }}{2}\)

Như vậy 4 số hạng đầu của dãy số là: \(\frac{{\sqrt 2 }}{2},\frac{{\sqrt 2 }}{2}, - \frac{{\sqrt 2 }}{2}, - \frac{{\sqrt 2 }}{2}\).

b) Ta có:

\({u_{n + 4}} = \sin \left\{ {\left[ {2\left( {n + 4} \right) - 1} \right]\frac{\pi }{4}} \right\} = \sin \left[ {\left( {2n - 1 + 8} \right)\frac{\pi }{4}} \right] = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4} + 2\pi } \right] = \sin \left[ {\left( {2n - 1} \right)\frac{\pi }{4}} \right] = {u_n}\)

Vậy \({u_{n + 4}} = {u_n}\) với \(\forall n \in {\mathbb{N}^*}\).

c) Theo câu b, ta có \({u_{n + 4}} = {u_n}\) với \(\forall n \in {\mathbb{N}^*}\). Như vậy \({u_1} = {u_5} = {u_9}\), \({u_2} = {u_6} = {u_{10}}\),\({u_3} = {u_7} = {u_{11}}\), \({u_4} = {u_8} = {u_{12}}\).

Do đó:

\({u_1} + {u_2} + {u_3} + ... + {u_{12}} = 3\left( {{u_1} + {u_2} + {u_3} + {u_4}} \right) = 3\left( {\frac{{\sqrt 2 }}{2} + \frac{{\sqrt 2 }}{2} + \frac{{ - \sqrt 2 }}{2} + \frac{{ - \sqrt 2 }}{2}} \right) = 0\)

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"