Đề bài
Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \cos n\). Dãy số \(\left( {{u_n}} \right)\) là:
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số bị chặn
D. Dãy số bị chặn dưới, không bị chặn trên
Phương pháp giải - Xem chi tiết
Sử dụng định nghĩa về dãy số tăng, dãy số giảm, dãy số bị chặn.
Lời giải chi tiết
Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \cos \left( {n + 1} \right) - \cos \left( n \right) = - 2\sin \left( {\frac{{n + 1 + n}}{2}} \right)\sin \left( {\frac{{n + 1 - n}}{2}} \right) = - 2\sin \frac{{2n + 1}}{2}\sin \frac{1}{2}\)
Với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định dấu của \(\sin \frac{{2n + 1}}{2}\), do đó không thể kết luận \(H > 0\) hay \(H < 0\), tức là không thể kết luận dãy số tăng hay giảm.
Mặt khác, do \( - 1 \le \cos n \le 1\) với \(\forall n \in {\mathbb{N}^*}\), dãy số \(\left( {{u_n}} \right)\) vừa bị chặn dưới, vừa bị chặn trên. Do đó dãy số \(\left( {{u_n}} \right)\) bị chặn.
Đáp án đúng là C.