Đề bài
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số giảm là:
A. \({u_n} = \frac{{3n - 1}}{{n + 1}}\)
B. \({u_n} = {n^3}\)
C. \({u_n} = \frac{1}{{{3^{n + 1}}}}\)
D. \({u_n} = \sqrt n \)
Phương pháp giải - Xem chi tiết
Sử dụng các cách xác định dãy số tăng hay giảm: Cho dãy số \(\left( {{u_n}} \right)\).
Cách 1: Xét hiệu \(H = {u_{n + 1}} - {u_n}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(H < 0\) với \(\forall n \in {\mathbb{N}^*}\).
Cách 2: Nếu \({u_n} > 0\) với \(\forall n \in {\mathbb{N}^*}\), xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}}\). Khi đó, dãy số \(\left( {{u_n}} \right)\) giảm khi \(T < 1\) với \(\forall n \in {\mathbb{N}^*}\).
Lời giải chi tiết
a) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \frac{{3\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} - \frac{{3n - 1}}{{n + 1}} = \frac{{3n + 2}}{{n + 2}} - \frac{{3n - 1}}{{n + 1}} = \frac{{\left( {3n + 2} \right)\left( {n + 1} \right) - \left( {3n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}}\)
\( = \frac{{\left( {3{n^2} + 5n + 2} \right) - \left( {3{n^2} + 5n - 2} \right)}}{{\left( {n + 1} \right)\left( {n + 2} \right)}} = \frac{4}{{\left( {n + 1} \right)\left( {n + 2} \right)}} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Do đó dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{{3n - 1}}{{n + 1}}\) không là dãy số giảm.
b) Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = {\left( {n + 1} \right)^3} - {n^3} = {n^3} + 3{n^2} + 3n + 1 - {n^3} = 3{n^2} + 3n + 1\).
Do \(3{n^2} + 3n + 1 > 0\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = {n^3}\) không là dãy số giảm.
c) Ta nhận thấy \({u_n} = \frac{1}{{{3^{n + 1}}}} > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{1}{{{3^{\left( {n + 1} \right) + 1}}}}:\frac{1}{{{3^{n + 1}}}} = \frac{{{3^{n + 1}}}}{{{3^{n + 2}}}} = \frac{1}{3}\)
Do \(T = \frac{1}{3} < 1\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{{3^{n + 1}}}}\) là dãy số giảm.
d) Ta nhận thấy \({u_n} = \sqrt n > 0\) với \(\forall n \in {\mathbb{N}^*}\).
Xét thương \(T = \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{\sqrt {n + 1} }}{{\sqrt n }} = \sqrt {\frac{{n + 1}}{n}} = \sqrt {1 + \frac{1}{n}} \)
Do \(T = \sqrt {1 + \frac{1}{n}} > \sqrt 1 = 11\) với \(\forall n \in {\mathbb{N}^*}\), nên dãy số \(\left( {{u_n}} \right)\) với \({u_n} = \frac{1}{{{3^{n + 1}}}}\) không là dãy số giảm.
Đáp án đúng là C.