Giải bài 1 trang 45 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:31

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_1} = 2\) và \({u_n} = \frac{{{u_{n - 1}} + 1}}{2}\) với mọi \(n \ge 2\). Ba số hạng đầu tiên của dãy số lần lượt là:

A. \(2;{\rm{ 1; }}\frac{3}{2}\)                                                         

B. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{2}\)

C. \(2;{\rm{ }}\frac{3}{2}{\rm{; }}\frac{5}{4}\)                                                         

D. \(2;{\rm{ }}\frac{3}{2};{\rm{ 2}}\)

Phương pháp giải - Xem chi tiết

Thay \(n = 2\), \(n = 3\) vào công thức \({u_n} = \frac{{{u_{n - 1}} + 1}}{2}\) để tìm \({u_2}\), \({u_3}\).

Lời giải chi tiết

Ta có \({u_2} = \frac{{{u_1} + 1}}{2} = \frac{{2 + 1}}{2} = \frac{3}{2}\); \({u_3} = \frac{{{u_2} + 1}}{2} = \frac{{\frac{3}{2} + 1}}{2} = \frac{5}{4}\).

Vậy ba số hạng đầu tiên của dãy số là \(2;{\rm{ }}\frac{3}{2};{\rm{ }}\frac{5}{4}\)

Đáp án đúng là C.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"