Giải bài 24 trang 50 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:33

Đề bài

Cho \(\left( {{u_n}} \right)\) là cấp số cộng có \({u_2} + {u_4} = 22\), \({u_1}{\rm{ }}{\rm{. }}{u_5} = 21\) và công sai \(d\) dương.

a) Tính \({u_{100}}\), \({S_{100}}\)                   

b) Tính tổng \({u_1} + {u_5} + {u_9} + ... + {u_{101}}\).

Phương pháp giải - Xem chi tiết

a) Sử dụng công thức \({u_n} = {u_1} + \left( {n - 1} \right)d\) để tìm \({u_1}\) và \(d\), từ đó tính \({u_{100}}\) và \({S_{100}}\).

b) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{4n - 3}}\), ta thấy \({v_1} = {u_1}\), \({v_2} = {u_5}\), \({v_3} = {u_9}\),…, \({v_{26}} = {u_{101}}\).

Vậy \(\left( {{v_n}} \right)\) là cấp số cộng với số hạng đầu \({v_1} = {u_1}\) và công sai \(d' = {v_2} - {v_1} = 4d\).

Do đó, tổng cần tính bằng \({v_1} + {v_2} + {v_3} + ... + {v_{26}}\)

Lời giải chi tiết

a) Ta có:

\({u_2} + {u_4} = 22 \Leftrightarrow {u_1} + d + {u_1} + 3d = 22 \Leftrightarrow 2{u_1} + 4d = 22 \Leftrightarrow {u_1} + 2d = 11\)

\( \Leftrightarrow {u_1} = 11 - 2d\) (1).

Mặt khắc, vì\({u_1}.{u_5} = 21 \Leftrightarrow {u_1}.\left( {{u_1} + 4d} \right) = 21\) (2).

Thế (1) vào (2) ta có:

\(\left( {11 - 2d} \right)\left( {11 - 2d + 4d} \right) = 21 \Leftrightarrow \left( {11 - 2d} \right)\left( {11 + 2d} \right) = 21 \Leftrightarrow {11^2} - {\left( {2d} \right)^2} = 21\)

\(4{d^2} = 100 \Leftrightarrow {d^2} = 25 \Leftrightarrow d = 5\) (do công sai \(d > 0\))

\({u_1} = 11 - 2d = 11 - 10 = 1\).

Vậy số hạng đầu và công sai của cấp số cộng lần lượt là 1 và 5.

Suy ra:

\({u_{100}} = {u_1} + 99d = 1 + 99.5 = 496\), \({S_{100}} = \frac{{\left( {2{u_1} + 99d} \right).100}}{2} = 50\left( {2 + 99.5} \right) = 24850\).

b) Xét dãy số \(\left( {{v_n}} \right)\) với \({v_n} = {u_{4n - 3}}\), ta thấy \({v_1} = {u_1}\), \({v_2} = {u_5}\), \({v_3} = {u_9}\),…, \({v_{26}} = {u_{101}}\).

Vậy \(\left( {{v_n}} \right)\) là cấp số cộng với số hạng đầu \({v_1} = {u_1} = 1\) và công sai \(d' = {v_2} - {v_1} = 4d = 20\).

Do đó, tổng cần tính bằng

\({v_1} + {v_2} + {v_3} + ... + {v_{26}} = S'_{26} = \frac{{\left( {2{v_1} + 25d'} \right).26}}{2} = 13\left( {2.1 + 25.20} \right) = 6526\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"