Giải bài 22 trang 50 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:34

Đề bài

Tìm \(x\) để ba số \(10 - 3x\), \(2{x^2} + 3\), \(7 - 4x\) theo thứ tự lập thành một cấp số cộng.

Phương pháp giải - Xem chi tiết

Sử dụng tính chất của cấp số cộng: Với dãy số \(\left( {{u_n}} \right)\) là cấp số cộng thì \({u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} = d\)

Lời giải chi tiết

Ta có ba số \(10 - 3x\), \(2{x^2} + 3\), \(7 - 4x\) theo thứ tự lập thành một cấp số cộng

\(\left( {7 - 4x} \right) - \left( {2{x^2} + 3} \right) = \left( {2{x^2} + 3} \right) - \left( {10 - 3x} \right) \Leftrightarrow 2\left( {2{x^2} + 3} \right) = 7 - 4x + 10 - 3x\)

\( \Leftrightarrow 4{x^2} + 6 = 17 - 7x \Leftrightarrow 4{x^2} + 7x - 11 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - \frac{{11}}{4}\end{array} \right.\)

Vậy \(x \in \left\{ {1; - \frac{{11}}{4}} \right\}\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"