Giải bài 55 trang 57 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:41

Đề bài

Cho dãy số \(\left( {{u_n}} \right)\) có tổng \(n\) số hạng đầu là\({S_n} = \frac{{n\left( { - 1 - 5n} \right)}}{2}\) với \(n \in {\mathbb{N}^*}\).

a)    Tính \({u_1}\), \({u_2}\) và \({u_3}\).

b)    Tìm công thức của số hạng tổng quát \({u_n}\).

c)     Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng.

Phương pháp giải - Xem chi tiết

a) Ta có \({S_n}\) là tổng \(n\) số hạng đầu tiên của dãy.

Với \(n = 1\) ta có \({S_1} = {u_1}\)

Với \(n = 2\) ta có \({S_2} = {u_1} + {u_2}\)

Với \(n = 3\) ta có \({S_3} = {u_1} + {u_2} + {u_3}\)

Giải hệ phương trình, ta tính được \({u_1}\), \({u_2}\) và \({u_3}\).

b) Sử dụng công thức \({u_n} = {S_n} - {S_{n - 1}}\)

c) Để chứng minh \(\left( {{u_n}} \right)\) là cấp số cộng, từ kết quả câu b, ta cần chứng minh \({u_n} - {u_{n - 1}}\) là hằng số.

Lời giải chi tiết

a, Ta có

\({S_1} = {u_1} \Rightarrow {u_1} = \frac{{1\left( { - 1 - 5.1} \right)}}{2} =  - 3\)

\({S_2} = {u_1} + {u_2} = {S_1} + {u_2} \Rightarrow {u_2} = {S_2} - {S_1} = \frac{{2\left( { - 1 - 5.2} \right)}}{2} - \frac{{1\left( { - 1 - 5.1} \right)}}{2} =  - 8\)

\({S_3} = {u_1} + {u_2} + {u_3} = {S_2} + {u_3} \Rightarrow {u_3} = {S_3} - {S_2} = \frac{{3\left( { - 1 - 5.3} \right)}}{3} - \frac{{2\left( { - 1 - 5.2} \right)}}{2} =  - 13\)

Vậy ba số hạng đầu của dãy số là \( - 3\), \( - 8\), \( - 13\).

b) Ta có

\({S_n} = {u_1} + {u_2} + ... + {u_{n - 1}} + {u_n}\), \({S_{n - 1}} = {u_1} + {u_2} + ... + {u_{n - 1}}\)

\( \Rightarrow {u_n} = {S_n} - {S_{n - 1}} = \frac{{n\left( { - 1 - 5n} \right)}}{2} - \frac{{\left( {n - 1} \right)\left[ { - 1 - 5\left( {n - 1} \right)} \right]}}{2} = \frac{{n - 5{n^2}}}{2} - \frac{{\left( {n - 1} \right)\left( {4 - 5n} \right)}}{2}\)

\( = \frac{{n - 5{n^2} - \left( { - 4 + 5{n^2} + 9n} \right)}}{2} = \frac{{4 - 10n}}{2} = 2 - 5n\)

c) Xét \({u_n} - {u_{n - 1}} = \left( {2 - 5n} \right) - \left[ {2 - 5\left( {n - 1} \right)} \right] = \left( {2 - 5n} \right) - \left( {2 - 5n + 5} \right) = 5\).

Do \({u_n} - {u_{n - 1}} = 5\) là hằng số, dãy số \(\left( {{u_n}} \right)\) là cấp số cộng.

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"