Đề bài
Tính các giới hạn sau:
a) \(\lim \frac{{4n + 2}}{3}\)
b) \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}}\)
c) \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}}\)
d) \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right)\)
Phương pháp giải - Xem chi tiết
Sử dụng tính chất về dãy số có giới hạn vô cực và định lí về giới hạn hữu hạn.
Lời giải chi tiết
a) Ta có \(\lim \left( {4n + 2} \right) = + \infty \), \(\lim 3 = 3\) nên \(\lim \frac{{4n + 2}}{3} = + \infty \)
b) Ta có \(\lim \frac{2}{n} = 0 \Rightarrow \lim \left( { - 5 + \frac{2}{n}} \right) = - 5\)
Mặt khác, \(\lim \left( {3n + 4} \right) = + \infty \). Suy ra \(\lim \frac{{3n + 4}}{{ - 5 + \frac{2}{n}}} = - \infty \)
c) Ta có \(\lim \frac{1}{{n + 1}} = 0 \Rightarrow \lim \left( { - 3 + \frac{1}{{n + 1}}} \right) = - 3\)
Mặt khác, \(\lim {5^n} = + \infty \), suy ra \(\lim \frac{{ - 3 + \frac{1}{{n + 1}}}}{{{5^n}}} = 0\)
d) Ta có \(\lim {4^n} = + \infty \Rightarrow \lim \frac{5}{{{4^n}}} = 0\).
Như vậy \(\lim \left( {6 - \frac{5}{{{4^n}}}} \right) = \lim 6 - \lim \frac{5}{{{4^n}}} = 6 - 0 = 6\).