Giải bài 23 trang 76 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:47

Đề bài

Cho hàm số \(f\left( x \right)\) thoả mãn \(\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right) = 2022\). Tính \(\mathop {\lim }\limits_{x \to  + \infty } \frac{{xf\left( x \right)}}{{x + 1}}\).

Phương pháp giải - Xem chi tiết

Chia cả tử và mẫu của biểu thức \(\frac{{xf\left( x \right)}}{{x + 1}}\) cho \(x\), rồi sử dụng các định lí về giới hạn hàm số.

Lời giải chi tiết

Ta có:\(\mathop {\lim }\limits_{x \to  + \infty } \frac{{xf\left( x \right)}}{{x + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{xf\left( x \right)}}{{x\left( {1 + \frac{1}{x}} \right)}} = \mathop {\lim }\limits_{x \to  + \infty } \frac{{f\left( x \right)}}{{1 + \frac{1}{x}}} = \frac{{\mathop {\lim }\limits_{x \to  + \infty } f\left( x \right)}}{{\mathop {\lim }\limits_{x \to  + \infty } 1 + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{x}}} = \frac{{2022}}{{1 + 0}} = 2022\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"