Đề bài
Cho \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4\), chứng minh rằng:
a) \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = 12\)
b) \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = 1\)
c) \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = 2\)
Phương pháp giải - Xem chi tiết
Sử dụng định lí về các phép toán giới hạn hữu hạn của hàm số.
Lời giải chi tiết
Định lí về các phép toán trên giới hạn hữu hạn của hàm số: Nếu \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) và \(\mathop {\lim }\limits_{x \to {x_0}} g\left( x \right) = M\) thì
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) + g\left( x \right)} \right] = L + M\), \(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right) - g\left( x \right)} \right] = L - M\)
\(\mathop {\lim }\limits_{x \to {x_0}} \left[ {f\left( x \right).g\left( x \right)} \right] = L.M\), \(\mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{L}{M}\) nếu \(M \ne 0\).
a) Ta có \(\mathop {\lim }\limits_{x \to 3} 3f\left( x \right) = \mathop {\lim }\limits_{x \to 3} 3.\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 3.4 = 12\).
b) Ta có \(\mathop {\lim }\limits_{x \to 3} \frac{{f\left( x \right)}}{4} = \frac{{\mathop {\lim }\limits_{x \to 3} f\left( x \right)}}{{\mathop {\lim }\limits_{x \to 3} 4}} = \frac{4}{4} = 1\).
c) Ta có \(\mathop {\lim }\limits_{x \to 3} f\left( x \right) = 4 \ge 0\) nên \(\mathop {\lim }\limits_{x \to 3} \sqrt {f\left( x \right)} = \sqrt 4 = 2\)