Đề bài
Với \(c\), \(k\) là các hằng số và \(k\) nguyên dương thì
A. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0\)
B. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \)
C. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \)
D. \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = + \infty \) hoặc \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = - \infty \)
Phương pháp giải - Xem chi tiết
Sử dụng kết quả cơ bản của giới hạn hữu hạn của hàm số tại vô cực.
Lời giải chi tiết
Với \(c\), \(k\) là các hằng số và \(k\) nguyên dương, ta luôn có \(\mathop {\lim }\limits_{x \to + \infty } \frac{c}{{{x^k}}} = 0\).
Đáp án đúng là A.