Giải bài 30 trang 81 sách bài tập toán 11 - Cánh diều

2024-09-14 13:09:51

Đề bài

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{   }}\left( {x \ge 1} \right)\\x + a{\rm{     }}\left( {x < 1} \right)\end{array} \right.\)

a)    Với \(a = 2\), xét tính liên tục của hàm số tại \(x = 1\).

b)    Tìm \(a\) để hàm số liên tục trên \(\mathbb{R}\)

Phương pháp giải - Xem chi tiết

a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\) trong trường hợp \(a = 2\).

b) Để hàm số liên tục trên \(\mathbb{R}\) thì hàm số phải liên tục tại \(x = 1\). Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\). Từ đó tìm được \(a\).

Lời giải chi tiết

a) Với \(a = 2\) ta có \(f\left( x \right) = \left\{ \begin{array}{l}{x^2} - x{\rm{   }}\left( {x \ge 1} \right)\\x + 2{\rm{     }}\left( {x < 1} \right)\end{array} \right.\).

Xét \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^2} - x} \right) = {1^2} - 1 = 0\), \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 2} \right) = 3\).

Do \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right)\), nên không tồn tại \(\mathop {\lim }\limits_{x \to 1} f\left( x \right)\). Do đó, hàm số không liên tục tại \(x = 1\).

b) Với \(x < 1\) thì \(f\left( x \right) = x + a\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\left( { - \infty ,1} \right)\).

Với \(x > 1\) thì \(f\left( x \right) = {x^2} - x\) là hàm đa thức nên \(f\left( x \right)\) liên tục trên \(\left( {1, + \infty } \right)\).

Do đó, để \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) thì \(f\left( x \right)\) phải liên tục tại \(x = 1\).

Tức là \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to 1} f\left( x \right) = f\left( 1 \right)\)

Suy ra \(\mathop {\lim }\limits_{x \to {1^ - }} \left( {x + a} \right) = 0 \Rightarrow 1 + a = 0 \Rightarrow a =  - 1\).

Bạn muốn hỏi điều gì?
Đặt Câu Hỏi

Chúng tôi sử dụng AI và sức mạnh của cộng đồng để giải quyết câu hỏi của bạn

Mẹo tìm đáp án nhanh

Search Google: "từ khóa + hoctot.me" Ví dụ: "Bài 1 trang 15 SGK Vật lí 11 hoctot.me"